These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 33379129)
41. A dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for highly sensitive and specific miRNA analysis for early diagnosis of alzheimer's disease. Xie J; Chen J; Zhang Y; Li C; Liu P; Duan WJ; Chen JX; Chen J; Dai Z; Li M Talanta; 2024 May; 272():125747. PubMed ID: 38364557 [TBL] [Abstract][Full Text] [Related]
42. A label-free fluorescence DNA probe based on ligation reaction with quadruplex formation for highly sensitive and selective detection of nicotinamide adenine dinucleotide. Zhao J; Zhang L; Jiang J; Shen G; Yu R Chem Commun (Camb); 2012 May; 48(37):4468-70. PubMed ID: 22456321 [TBL] [Abstract][Full Text] [Related]
43. Ligation-dependent rolling circle amplification method for ATP determination with high selectivity and sensitivity. Chen M; Li Y; Li P; Guo W; Yang Y; Wu X; Ye Y; Huang J Analyst; 2021 Oct; 146(21):6605-6614. PubMed ID: 34586110 [TBL] [Abstract][Full Text] [Related]
44. Specific discrimination and universal signal amplification for RNA detection by coupling toehold exchange with RCA through nucleolytic conversion of a structure-switched hairpin probe. Yu W; Li J; Zuo C; Tao Y; Bai S; Li J; Zhang Z; Xie G Anal Chim Acta; 2019 Aug; 1068():96-103. PubMed ID: 31072482 [TBL] [Abstract][Full Text] [Related]
45. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs. Xu H; Zhang S; Ouyang C; Wang Z; Wu D; Liu Y; Jiang Y; Wu ZS Talanta; 2019 Jan; 192():175-181. PubMed ID: 30348375 [TBL] [Abstract][Full Text] [Related]
46. A cascade signal amplification strategy for sensitive and label-free DNA detection based on Exo III-catalyzed recycling coupled with rolling circle amplification. Liu X; Xue Q; Ding Y; Zhu J; Wang L; Jiang W Analyst; 2014 Jun; 139(11):2884-9. PubMed ID: 24752174 [TBL] [Abstract][Full Text] [Related]
47. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide. Li W; Hou T; Wu M; Li F Talanta; 2016; 148():116-21. PubMed ID: 26653431 [TBL] [Abstract][Full Text] [Related]
48. Sensitive and label-free DNA methylation detection by ligation-mediated hyperbranched rolling circle amplification. Cao A; Zhang CY Anal Chem; 2012 Jul; 84(14):6199-205. PubMed ID: 22715985 [TBL] [Abstract][Full Text] [Related]
49. Terminal protection of small-molecule-linked DNA for sensitive fluorescence detection of protein binding based on nucleic acid amplification. Ou LJ; Wang HB; Chu X Analyst; 2013 Dec; 138(23):7218-23. PubMed ID: 24131014 [TBL] [Abstract][Full Text] [Related]
50. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296 [TBL] [Abstract][Full Text] [Related]
51. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Xiang Y; Zhu X; Huang Q; Zheng J; Fu W Biosens Bioelectron; 2015 Apr; 66():512-9. PubMed ID: 25500527 [TBL] [Abstract][Full Text] [Related]
52. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid. Xue Q; Lv Y; Cui H; Gu X; Zhang S; Liu J Anal Chim Acta; 2015 Jan; 856():103-9. PubMed ID: 25542364 [TBL] [Abstract][Full Text] [Related]
53. Label-Free Telomerase Detection in Single Cell Using a Five-Base Telomerase Product-Triggered Exponential Rolling Circle Amplification Strategy. Li X; Cui Y; Du Y; Tang A; Kong D ACS Sens; 2019 Apr; 4(4):1090-1096. PubMed ID: 30945529 [TBL] [Abstract][Full Text] [Related]
54. Label-free fluorescence detection of circulating microRNAs based on duplex-specific nuclease-assisted target recycling coupled with rolling circle amplification. Fan T; Mao Y; Liu F; Zhang W; Lin JS; Yin J; Tan Y; Huang X; Jiang Y Talanta; 2019 Aug; 200():480-486. PubMed ID: 31036212 [TBL] [Abstract][Full Text] [Related]
55. Integration of rolling circle amplification and optomagnetic detection on a polymer chip. Garbarino F; Minero GAS; Rizzi G; Fock J; Hansen MF Biosens Bioelectron; 2019 Oct; 142():111485. PubMed ID: 31301578 [TBL] [Abstract][Full Text] [Related]
56. Target-triggered activation of rolling circle amplification for label-free and sensitive fluorescent uracil-DNA glycosylase activity detection and inhibition. Yang F; Li X; Li J; Xiang Y; Yuan R Talanta; 2019 Nov; 204():812-816. PubMed ID: 31357368 [TBL] [Abstract][Full Text] [Related]
57. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification. Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647 [TBL] [Abstract][Full Text] [Related]
58. Dumbbell probe-mediated cascade isothermal amplification: a novel strategy for label-free detection of microRNAs and its application to real sample assay. Bi S; Cui Y; Li L Anal Chim Acta; 2013 Jan; 760():69-74. PubMed ID: 23265735 [TBL] [Abstract][Full Text] [Related]
60. Sensitive and selective detection of the p53 gene based on a triple-helix magnetic probe coupled to a fluorescent liposome hybridization assembly via rolling circle amplification. Li X; Song J; Xue Q; Zhao H; Liu M; Chen B; Liu Y; Jiang W; Li CZ Analyst; 2017 Oct; 142(19):3598-3604. PubMed ID: 28891579 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]