These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33379437)

  • 1. Planar focusing reflectors based on monolithic high contrast gratings: design procedure and comparison with parabolic mirrors.
    Komar P; Gębski M; Czyszanowski T; Dems M; Wasiak M
    Opt Express; 2020 Dec; 28(26):38745-38761. PubMed ID: 33379437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Demonstration of Light Focusing Enabled by Monolithic High-Contrast Grating Mirrors.
    Komar P; Gȩbski M; Lott JA; Czyszanowski T; Wasiak M
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25533-25539. PubMed ID: 34008943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-numerical-aperture high-reflectivity focusing reflectors using concentric circular high-contrast gratings.
    Ma C; Huang Y; Ren X
    Appl Opt; 2015 Feb; 54(4):973-8. PubMed ID: 25967814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatic aberration in planar focusing mirrors based on a monolithic high contrast grating.
    Komar P; Gębski M; Lott JA; Wasiak M
    Opt Express; 2021 Sep; 29(19):30296-30306. PubMed ID: 34614755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis and design guideline for focusing subwavelength gratings.
    Duan X; Zhou G; Huang Y; Shang Y; Ren X
    Opt Express; 2015 Feb; 23(3):2639-46. PubMed ID: 25836127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithic high contrast grating on GaSb/AlAsSb based epitaxial structures for mid-infrared wavelength applications.
    Schade A; Bader A; Huber T; Kuhn S; Czyszanowski T; Pfenning A; Rygała M; Smołka T; Motyka M; Sęk G; Hartmann F; Höfling S
    Opt Express; 2023 May; 31(10):16025-16034. PubMed ID: 37157690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of two-dimensional resonant reflectors with zero-contrast gratings.
    Shokooh-Saremi M; Magnusson R
    Opt Lett; 2014 Dec; 39(24):6958-61. PubMed ID: 25503040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wideband reflectors with zero-contrast gratings.
    Magnusson R
    Opt Lett; 2014 Aug; 39(15):4337-40. PubMed ID: 25078171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings.
    Lu F; Sedgwick FG; Karagodsky V; Chase C; Chang-Hasnain CJ
    Opt Express; 2010 Jun; 18(12):12606-14. PubMed ID: 20588387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The planar parabolic optical antenna.
    Schoen DT; Coenen T; García de Abajo FJ; Brongersma ML; Polman A
    Nano Lett; 2013 Jan; 13(1):188-93. PubMed ID: 23194111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Reflection of GaAs Nanowire Laser Using Short-Period, Symmetric Double Metal Grating Reflectors.
    Yu Q; Wei W; Yan X; Zhang X
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant gratings with an etch-stop layer and a fabrication-error tolerant design.
    Hogan B; Lewis L; Romero-Vivas J; Ochalski TJ; Hegarty SP
    Opt Express; 2018 May; 26(10):13205-13213. PubMed ID: 29801347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encapsulated subwavelength grating as a quasi-monolithic resonant reflector.
    Brückner F; Friedrich D; Britzger M; Clausnitzer T; Burmeister O; Kley EB; Danzmann K; Tünnermann A; Schnabel R
    Opt Express; 2009 Dec; 17(26):24334-41. PubMed ID: 20052143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical design of an LED motorcycle headlamp with compound reflectors and a toric lens.
    Sun WS; Tien CL; Lo WC; Chu PY
    Appl Opt; 2015 Oct; 54(28):E102-8. PubMed ID: 26479638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal parameters of monolithic high-contrast grating mirrors.
    Marciniak M; Gębski M; Dems M; Haglund E; Larsson A; Riaziat M; Lott JA; Czyszanowski T
    Opt Lett; 2016 Aug; 41(15):3495-8. PubMed ID: 27472602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis of subwavelength high contrast grating reflectors.
    Karagodsky V; Sedgwick FG; Chang-Hasnain CJ
    Opt Express; 2010 Aug; 18(16):16973-88. PubMed ID: 20721086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of secondary light source for reflectors with axisymmetric light guide.
    Ohno H; Nakagawa K; Kamikawa T
    Appl Opt; 2019 May; 58(14):3848-3855. PubMed ID: 31158199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning of reflection spectrum of a monolithic high-contrast grating by variation of its spatial dimensions.
    Marciniak M; Broda A; Gębski M; Dems M; Muszalski J; Czerwinski A; Ratajczak J; Marona Ł; Nakwaski W; Lott JA; Czyszanowski T
    Opt Express; 2020 Jul; 28(14):20967-20977. PubMed ID: 32680146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Narrow Linewidth Distributed Bragg Reflectors Based on InGaN/GaN Laser.
    Xie W; Li J; Liao M; Deng Z; Wang W; Sun S
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31405252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror.
    Gębski M; Dems M; Szerling A; Motyka M; Marona L; Kruszka R; Urbańczyk D; Walczakowski M; Pałka N; Wójcik-Jedlińska A; Wang QJ; Zhang DH; Bugajski M; Wasiak M; Czyszanowski T
    Opt Express; 2015 May; 23(9):11674-86. PubMed ID: 25969259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.