These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33379458)

  • 1. Terahertz response of plasmonic nanoparticles: Plasmonic Zeeman Effect.
    Márquez A; Esquivel-Sirvent R
    Opt Express; 2020 Dec; 28(26):39005-39016. PubMed ID: 33379458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz magnetoplasmon energy concentration and splitting in Graphene PN Junctions.
    Chamanara N; Sounas D; Szkopek T; Caloz C
    Opt Express; 2013 Oct; 21(21):25356-63. PubMed ID: 24150377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of terahertz plasmon and plasmon-polariton splitting in a grating-coupled AlGaN/GaN heterostructure.
    Yu Y; Zheng Z; Qin H; Sun J; Huang Y; Li X; Zhang Z; Wu D; Cai Y; Zhang B; Popov VV
    Opt Express; 2018 Nov; 26(24):31794-31807. PubMed ID: 30650759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faceting-Controlled Zeeman Splitting in Plasmonic TiO
    Yin P; Hegde M; Garnet NS; Tan Y; Radovanovic PV
    Nano Lett; 2019 Sep; 19(9):6695-6702. PubMed ID: 31448925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetry Breaking-Induced Plasmonic Mode Splitting in Coupled Gold-Silver Alloy Nanodisk Array for Ultrasensitive RGB Colorimetric Biosensing.
    Misbah I; Zhao F; Shih WC
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2273-2281. PubMed ID: 30569702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Generation of Plasmonic Nanoparticles for Manipulating Photon-Plasmon Coupling in Microtube Cavities.
    Yin Y; Wang J; Lu X; Hao Q; Saei Ghareh Naz E; Cheng C; Ma L; Schmidt OG
    ACS Nano; 2018 Apr; 12(4):3726-3732. PubMed ID: 29630816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon modes in graphene: status and prospect.
    Politano A; Chiarello G
    Nanoscale; 2014 Oct; 6(19):10927-40. PubMed ID: 25130215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic polymers unraveled through single particle spectroscopy.
    Slaughter LS; Wang LY; Willingham BA; Olson JM; Swanglap P; Dominguez-Medina S; Link S
    Nanoscale; 2014 Oct; 6(19):11451-61. PubMed ID: 25155111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the Mechanism of Excitonic Splitting in In
    Yin P; Hegde M; Tan Y; Chen S; Garnet N; Radovanovic PV
    ACS Nano; 2018 Nov; 12(11):11211-11218. PubMed ID: 30335948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamically induced Zeeman effect in massless QED.
    Ferrer EJ; de la Incera V
    Phys Rev Lett; 2009 Feb; 102(5):050402. PubMed ID: 19257489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-driven surface catalysis in hybridized plasmonic gap modes.
    Wang H; Liu T; Huang Y; Fang Y; Liu R; Wang S; Wen W; Sun M
    Sci Rep; 2014 Nov; 4():7087. PubMed ID: 25404139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear mode conversion of terahertz radiation into terahertz surface magnetoplasmons on a rippled surface of magnetized n-InSb.
    Kumar P; Kumar M; Tripathi VK
    Opt Lett; 2016 Apr; 41(7):1408-11. PubMed ID: 27192248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective multipole oscillations direct the plasmonic coupling at the nanojunction interfaces.
    Hooshmand N; El-Sayed MA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19299-19304. PubMed ID: 31488713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles.
    Ling CW; Xiao M; Chan CT; Yu SF; Fung KH
    Opt Express; 2015 Feb; 23(3):2021-31. PubMed ID: 25836073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin InSb layers with metallic gratings: a novel platform for spectrally-selective THz plasmonic sensing.
    Lin S; Bhattarai K; Zhou J; Talbayev D
    Opt Express; 2016 Aug; 24(17):19448-57. PubMed ID: 27557222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.