These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33379524)

  • 1. Third-order Riemann pulses in optical fibers.
    Bongiovanni D; Wetzel B; Li Z; Hu Y; Wabnitz S; Morandotti R; Chen Z
    Opt Express; 2020 Dec; 28(26):39827-39840. PubMed ID: 33379524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical generation and control of spatial Riemann waves.
    Bongiovanni D; Wetzel B; Yang P; Hu Y; Qiu Y; Xu J; Wabnitz S; Chen Z; Morandotti R
    Opt Lett; 2019 Jul; 44(14):3542-3545. PubMed ID: 31305568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift.
    Palacios SL; Guinea A; Fernández-Díaz JM; Crespo RD
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):R45-7. PubMed ID: 11969877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-power regime of femtosecond-laser pulse propagation in silica: multiple-cone formation.
    Ishikawa K; Kumagai H; Midorikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056608. PubMed ID: 12513624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiating dispersive shock waves in non-local optical media.
    El GA; Smyth NF
    Proc Math Phys Eng Sci; 2016 Mar; 472(2187):20150633. PubMed ID: 27118911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher-order effects on the properties of the optical compact bright pulse: Collective variable approach.
    Pokam Nguewawe C; Fewo SI; Yemélé D
    Phys Rev E; 2017 Jan; 95(1-1):012215. PubMed ID: 28208352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral interference measurement of nonlinear pulse propagation dynamics in optical fibers.
    Yang W; Fetterman MR; Davis JC; Warren WS
    Opt Lett; 2000 Jan; 25(1):22-4. PubMed ID: 18059769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion.
    Bourkoff E; Zhao W; Joseph RI; Christodoulides DN
    Opt Lett; 1987 Apr; 12(4):272-4. PubMed ID: 19738862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super chirped rogue waves in optical fibers.
    Chen S; Zhou Y; Bu L; Baronio F; Soto-Crespo JM; Mihalache D
    Opt Express; 2019 Apr; 27(8):11370-11384. PubMed ID: 31052982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation.
    Kamchatnov AM; Kraenkel RA; Umarov BA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036609. PubMed ID: 12366282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses.
    Zhang L; Yan Y; Yue Y; Lin Q; Painter O; Beausoleil RG; Willner AE
    Opt Express; 2011 Jun; 19(12):11584-90. PubMed ID: 21716390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients.
    Kruglov VI; Peacock AC; Harvey JD
    Phys Rev Lett; 2003 Mar; 90(11):113902. PubMed ID: 12688927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher-order dispersion and nonlinear effects of optical fibers under septic self-steepening and self-frequency shift.
    Ndebele KK; Tabi CB; Tiofack CGL; Kofané TC
    Phys Rev E; 2021 Oct; 104(4-1):044208. PubMed ID: 34781579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chirped self-similar solutions of a generalized nonlinear Schrödinger equation model.
    Chen S; Yi L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016606. PubMed ID: 15697746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periodic and localized waves in parabolic-law media with third- and fourth-order dispersions.
    Triki H; Kruglov VI
    Phys Rev E; 2022 Oct; 106(4-1):044214. PubMed ID: 36397579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Existence of solitary waves in optical fibers owing to the mutual support between bright and dark pulses.
    Wang L; Yang CC
    Opt Lett; 1990 May; 15(9):474-6. PubMed ID: 19767980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients.
    Kruglov VI; Peacock AC; Harvey JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056619. PubMed ID: 16089680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled Helmholtz equations: Chirped solitary waves.
    Saha N; Roy B; Khare A
    Chaos; 2021 Nov; 31(11):113104. PubMed ID: 34881603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soliton formation from a pulse passing the zero-dispersion point in a nonlinear Schrodinger equation.
    Clarke SR; Grimshaw RH; Malomed BA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5B):5794-801. PubMed ID: 11031639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of pulse trains in nonlinear optical fibers through the generalized complex Ginzburg-Landau equation.
    Latchio Tiofack CG; Mohamadou A; Kofané TC; Moubissi AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066604. PubMed ID: 20365291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.