BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33379533)

  • 1. Rolling-shutter-effect camera-based visible light communication using RGB channel separation and an artificial neural network.
    Hsu KL; Chow CW; Liu Y; Wu YC; Hong CY; Liao XL; Lin KH; Chen YY
    Opt Express; 2020 Dec; 28(26):39956-39962. PubMed ID: 33379533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RGB visible light communication using mobile-phone camera and multi-input multi-output.
    Liang K; Chow CW; Liu Y
    Opt Express; 2016 May; 24(9):9383-8. PubMed ID: 27137554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm.
    Hsu KL; Wu YC; Chuang YC; Chow CW; Liu Y; Liao XL; Lin KH; Chen YY
    Opt Express; 2020 Jan; 28(2):2427-2432. PubMed ID: 32121932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PAM4 rolling-shutter demodulation using a pixel-per-symbol labeling neural network for optical camera communications.
    Lin YS; Chow CW; Liu Y; Chang YH; Lin KH; Wang YC; Chen YY
    Opt Express; 2021 Sep; 29(20):31680-31688. PubMed ID: 34615256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor.
    Chow CW; Shiu RJ; Liu YC; Liu Y; Yeh CH
    Opt Express; 2018 Mar; 26(6):7079-7084. PubMed ID: 29609393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications.
    Chuang YC; Chow CW; Liu Y; Yeh CH; Liao XL; Lin KH; Chen YY
    Opt Express; 2019 Oct; 27(21):29924-29929. PubMed ID: 31684247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2.38 Kbits/frame WDM transmission over a CVLC system with sampling reconstruction for SFO mitigation.
    Deng R; He J; Hong Y; Shi J; Chen L
    Opt Express; 2017 Nov; 25(24):30575-30581. PubMed ID: 29221084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation.
    Liu L; Deng R; Chen LK
    Opt Express; 2019 Nov; 27(23):33840-33846. PubMed ID: 31878443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms.
    Liang K; Chow CW; Liu Y; Yeh CH
    Opt Express; 2016 Oct; 24(22):25641-25646. PubMed ID: 27828499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical camera communication for mobile payments using an LED panel light.
    Chen HW; Wen SS; Liu Y; Fu M; Weng ZC; Zhang M
    Appl Opt; 2018 Jul; 57(19):5288-5294. PubMed ID: 30117816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication.
    Chow CW; Shiu RJ; Liu YC; Liao XL; Lin KH; Wang YC; Chen YY
    Opt Express; 2018 May; 26(10):12530-12535. PubMed ID: 29801291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications.
    Chen CW; Chow CW; Liu Y; Yeh CH
    Opt Express; 2017 Oct; 25(20):24362-24367. PubMed ID: 29041380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile-phone based visible light communication using region-grow light source tracking for unstable light source.
    Liang K; Chow CW; Liu Y
    Opt Express; 2016 Jul; 24(15):17505-10. PubMed ID: 27464196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional autoencoder for exposure effects equalization and noise mitigation in optical camera communication.
    Jurado-Verdu C; Guerra V; Matus V; Rabadan J; Perez-Jimenez R
    Opt Express; 2021 Jul; 29(15):22973-22991. PubMed ID: 34614574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Object Distance Estimation Using a Single Image Taken from a Moving Rolling Shutter Camera.
    Kim N; Bae J; Kim C; Park S; Sohn HG
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color-filter-free spatial visible light communication using RGB-LED and mobile-phone camera.
    Chen SH; Chow CW
    Opt Express; 2014 Dec; 22(25):30713-8. PubMed ID: 25607019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical camera communication (OCC) using a laser-diode coupled optical-diffusing fiber (ODF) and rolling shutter image sensor.
    Tsai DC; Chang YH; Chow CW; Liu Y; Yeh CH; Peng CW; Hsu LS
    Opt Express; 2022 May; 30(10):16069-16077. PubMed ID: 36221459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigation of performance degradation due to dynamic display contents in visible light communication using TV backlight and CMOS image sensor.
    Chow CW; Shiu RJ; Liu YC; Wang WC; Liao XL; Lin KH; Wang YC; Chen YY
    Opt Express; 2018 Aug; 26(17):22342-22347. PubMed ID: 30130928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and Analysis of Spatial Inter-Symbol Interference for RGB Image Sensors Based on Visible Light Communication.
    Liu P; Zheng P; Yang S; Chen Z
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-column pixel neural network scheme for modulation format shifting based optical camera communications.
    Shi J; He J; Yan X
    Opt Lett; 2023 Jan; 48(1):85-88. PubMed ID: 36563375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.