These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33379535)

  • 1. Matrix optics representation and imaging analysis of a light-field near-eye display.
    Yao C; Cheng D; Wang Y
    Opt Express; 2020 Dec; 28(26):39976-39997. PubMed ID: 33379535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an optical see-through light-field near-eye display using a discrete lenslet array.
    Yao C; Cheng D; Yang T; Wang Y
    Opt Express; 2018 Jul; 26(14):18292-18301. PubMed ID: 30114010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support.
    Xia X; Guan Y; State A; Chakravarthula P; Rathinavel K; Cham TJ; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3114-3124. PubMed ID: 31403422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational superposition compound eye imaging for extended depth-of-field and field-of-view.
    Nakamura T; Horisaki R; Tanida J
    Opt Express; 2012 Dec; 20(25):27482-95. PubMed ID: 23262698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ThinVR: Heterogeneous microlens arrays for compact, 180 degree FOV VR near-eye displays.
    Ratcliff J; Supikov A; Alfaro S; Azuma R
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):1981-1990. PubMed ID: 32070971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized sampling using a compound-eye imaging system for multi-dimensional object acquisition.
    Horisaki R; Choi K; Hahn J; Tanida J; Brady DJ
    Opt Express; 2010 Aug; 18(18):19367-78. PubMed ID: 20940832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-color retinal-projection near-eye display using a multiplexing-encoding holographic method.
    Song W; Li X; Zheng Y; Liu Y; Wang Y
    Opt Express; 2021 Mar; 29(6):8098-8107. PubMed ID: 33820262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LensIet VR: Thin, Flat and Wide-FOV Virtual Reality Display Using Fresnel Lens and LensIet Array.
    Bang K; Jo Y; Chae M; Lee B
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2545-2554. PubMed ID: 33755568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study.
    Weinstein RS; Descour MR; Liang C; Barker G; Scott KM; Richter L; Krupinski EA; Bhattacharyya AK; Davis JR; Graham AR; Rennels M; Russum WC; Goodall JF; Zhou P; Olszak AG; Williams BH; Wyant JC; Bartels PH
    Hum Pathol; 2004 Nov; 35(11):1303-14. PubMed ID: 15668886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Floated image mapping for integral floating display.
    Kim J; Min SW; Lee B
    Opt Express; 2008 Jun; 16(12):8549-56. PubMed ID: 18545568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of viewing distance and age on the performance and symptoms in a visual search task in augmented reality.
    Huang YY; Menozzi M
    Appl Ergon; 2022 Jul; 102():103746. PubMed ID: 35290897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid holographic Maxwellian near-eye display based on spherical wave and plane wave reconstruction for augmented reality display.
    Wang Z; Zhang X; Lv G; Feng Q; Ming H; Wang A
    Opt Express; 2021 Feb; 29(4):4927-4935. PubMed ID: 33726038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays.
    Yöntem AÖ; Onural L
    J Opt Soc Am A Opt Image Sci Vis; 2011 Nov; 28(11):2359-75. PubMed ID: 22048304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super multi-view near-eye display to solve vergence-accommodation conflict.
    Ueno T; Takaki Y
    Opt Express; 2018 Nov; 26(23):30703-30715. PubMed ID: 30469963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of minimum permissible geometrical parameters of a near-to-eye display.
    Valyukh S; Slobodyanyuk O
    Appl Opt; 2015 Jul; 54(21):6526-33. PubMed ID: 26367839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical model for the perceived retinal image formation of 3D display systems.
    Xu M; Huang H; Hua H
    Opt Express; 2020 Dec; 28(25):38029-38048. PubMed ID: 33379624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical modelling of an accommodative light field display system and prediction of human eye responses.
    Miyanishi Y; Sahin E; Gotchev A
    Opt Express; 2022 Oct; 30(21):37193-37212. PubMed ID: 36258312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of matrix condition of Hybrid, space variant optics by the means of parallel optics design.
    Klapp I; Mendlovic D
    Opt Express; 2009 Jul; 17(14):11673-89. PubMed ID: 19582082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberration reduction and unique light focusing in a photonic crystal negative refractive lens.
    Asatsuma T; Baba T
    Opt Express; 2008 Jun; 16(12):8711-9. PubMed ID: 18545584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array.
    Choi S; Park D; Lienau C; Jeong MS; Byeon CC; Ko DK; Kim DS
    Opt Express; 2008 Aug; 16(16):12075-83. PubMed ID: 18679481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.