These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33379580)

  • 1. Overcoming the tradeoff between confinement and focal distance using virtual ultrasonic optical waveguides.
    Scopelliti MG; Huang H; Pediredla A; Narasimhan SG; Gkioulekas I; Chamanzar M
    Opt Express; 2020 Dec; 28(25):37459-37473. PubMed ID: 33379580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonically sculpted virtual relay lens for in situ microimaging.
    Scopelliti MG; Chamanzar M
    Light Sci Appl; 2019; 8():65. PubMed ID: 31645914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced spectral-domain optical coherence tomography (SD-OCT) using in situ ultrasonic virtual tunable optical waveguides.
    Karimi Y; Yang H; Liu J; Park BH; Chamanzar M
    Opt Express; 2022 Sep; 30(19):34256-34275. PubMed ID: 36242442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized virtual optical waveguides enhance light throughput in scattering media.
    Pediredla A; Scopelliti MG; Narasimhan S; Chamanzar M; Gkioulekas I
    Nat Commun; 2023 Sep; 14(1):5681. PubMed ID: 37709758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonically Steerable Graded-Index Optical Waveguides for Deep Tissue Light Delivery: Theory and Applications.
    Scopelliti MG; Karimi Y; Chamanzar M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6008-6011. PubMed ID: 31947216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a dual focal-plane near-eye display using diffractive waveguides and multiple lenses.
    Shi X; Xue Z; Ma S; Wang B; Liu Y; Wang Y; Song W
    Appl Opt; 2022 Jul; 61(20):5844-5849. PubMed ID: 36255821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete power concentration into a single waveguide in large-scale waveguide array lenses.
    Catrysse PB; Liu V; Fan S
    Sci Rep; 2014 Oct; 4():6635. PubMed ID: 25319203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cylindrical Multimode Waveguides as Focusing Interferometric Systems.
    Michailow W; Almond NW; Beere HE; Ritchie DA
    ACS Photonics; 2023 Jun; 10(6):1756-1768. PubMed ID: 37363631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep imaging in highly scattering media by combining reflection matrix measurement with Bessel-like beam based optical coherence tomography.
    Yang Q; Miao Y; Huo T; Li Y; Heidari E; Zhu J; Chen Z
    Appl Phys Lett; 2018 Jul; 113(1):011106. PubMed ID: 30034015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ 3D reconfigurable ultrasonically sculpted optical beam paths.
    Karimi Y; Scopelliti MG; Do N; Alam MR; Chamanzar M
    Opt Express; 2019 Mar; 27(5):7249-7265. PubMed ID: 30876292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic sculpting of virtual optical waveguides in tissue.
    Chamanzar M; Scopelliti MG; Bloch J; Do N; Huh M; Seo D; Iafrati J; Sohal VS; Alam MR; Maharbiz MM
    Nat Commun; 2019 Jan; 10(1):92. PubMed ID: 30626873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing.
    Huang H; Mao X; Lin SC; Kiraly B; Huang Y; Huang TJ
    Lab Chip; 2010 Sep; 10(18):2387-93. PubMed ID: 20697662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct light-coupling to thin-film waveguides using a grating-structured GRIN lens.
    Fricke-Begemann T; Ihlemann J
    Opt Express; 2010 Sep; 18(19):19860-6. PubMed ID: 20940877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focusing of partially coherent light by a graded-index lens.
    Agrawal GP
    Opt Lett; 2023 Jan; 48(2):436-439. PubMed ID: 36638477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths.
    Liu H; Xu X; Lai P; Wang LV
    J Biomed Opt; 2011 Aug; 16(8):086009. PubMed ID: 21895321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging.
    Mao Y; Chang S; Sherif S; Flueraru C
    Appl Opt; 2007 Aug; 46(23):5887-94. PubMed ID: 17694139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays.
    Koike Y; Takezawa Y; Ohtsuka Y
    Appl Opt; 1988 Feb; 27(3):486-91. PubMed ID: 20523627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEMS compatible micro-GRIN lenses for fiber to chip coupling of light.
    Zickar M; Noell W; Marxer C; de Rooij N
    Opt Express; 2006 May; 14(10):4237-49. PubMed ID: 19516576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors.
    Morimoto Y; Ishigure T
    Opt Express; 2016 Feb; 24(4):3550-61. PubMed ID: 26907012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.