These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33379596)

  • 1. Optical analysis of a multi-aperture solar central receiver system for high-temperature concentrating solar applications.
    Li L; Wang B; Pye J; Bader R; Wang W; Lipiński W
    Opt Express; 2020 Dec; 28(25):37654-37668. PubMed ID: 33379596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical analysis of a solar thermochemical system with a rotating tower reflector and a receiver-reactor array.
    Li L; Yang S; Wang B; Pye J; Lipiński W
    Opt Express; 2020 Jun; 28(13):19429-19445. PubMed ID: 32672220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic algorithm optimization of heliostat field layout for the design of a central receiver solar thermal power plant.
    Haris M; Rehman AU; Iqbal S; Athar SO; Kotb H; AboRas KM; Alkuhayli A; Ghadi YY; Kitmo
    Heliyon; 2023 Nov; 9(11):e21488. PubMed ID: 38034628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods.
    Sarmah N; Richards BS; Mallick TK
    Appl Opt; 2011 Jul; 50(19):3303-10. PubMed ID: 21743533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats.
    Dai Y; Li X; Zhou L; Ma X; Wang R
    Opt Express; 2016 May; 24(10):A966-73. PubMed ID: 27409969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical modeling of a cylindrical-hemispherical receiver for parabolic dish concentrator.
    Kumar KH; Reddy DS; Karmakar M
    Environ Sci Pollut Res Int; 2023 May; 30(22):63121-63134. PubMed ID: 36952169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFD modeling and performance evaluation of an open-aperture partially evacuated receiver with internal twisted inserts in solar PTCs: energy and exergy analysis.
    Madadi Avargani V; Zendehboudi S
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43346-43368. PubMed ID: 36653690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solar parabolic dish collector for concentrated solar thermal systems: a review and recommendations.
    Kumar KH; Daabo AM; Karmakar MK; Hirani H
    Environ Sci Pollut Res Int; 2022 May; 29(22):32335-32367. PubMed ID: 35142997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Investigation of High Temperature Application of Molten Solar Salt Nanofluid in a Direct Absorption Solar Collector.
    Karim MA; Arthur O; Yarlagadda PK; Islam M; Mahiuddin M
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30646577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility analysis of coexistence between plantation and tower concentrating solar system.
    Kuang R; Chen G; Jin Y; Xiao J; Shen Y
    Heliyon; 2023 Mar; 9(3):e14056. PubMed ID: 36923905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Method for Determination of the Transmission Efficiency of a Silica Optical Fiber Cable Using a Solar Power Tower.
    Rosa LG; De Almeida G; Garcia Pereira JC; Martínez-Hernández A; González-Aguilar J
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimisation study of a solar tower receiver: the influence of geometry and material, heat flux, and heat transfer fluid on thermal and mechanical performance.
    Shatnawi H; Lim CW; Ismail FB; Aldossary A
    Heliyon; 2021 Jul; 7(7):e07489. PubMed ID: 34307940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermo-Economic Optimization of an Idealized Solar Tower Power Plant Combined with MED System.
    Zheng Y; Zhao Y; Liang S; Zheng H
    Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flux profile at focal area of concentrating solar dishes.
    Foulaadvand ME; Aghamohammadi A; Karimi P; Borzouei H
    Sci Rep; 2021 Dec; 11(1):24474. PubMed ID: 34963689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VISproPT: A high-precision instrument for 3D shape analysis of parabolic trough panels.
    Montecchi M; Cara G; Benedetti A
    Open Res Eur; 2023; 3():111. PubMed ID: 37744278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimized approach for solar concentrating parabolic dish based on particle swarm optimization-genetic algorithm.
    Li L; Zhang Y; Li H; Liu R; Guo P
    Heliyon; 2024 Feb; 10(4):e26165. PubMed ID: 38420471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonimaging polygonal mirrors achieving uniform irradiance distributions on concentrating photovoltaic cells.
    Schmitz M; Dähler F; Elvinger F; Pedretti A; Steinfeld A
    Appl Opt; 2017 Apr; 56(11):3035-3052. PubMed ID: 28414361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic and Economic Analysis of an Integrated Solar Combined Cycle System.
    Wang S; Fu Z; Sajid S; Zhang T; Zhang G
    Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic heliostat learning for in situ concentrating solar power plant metrology with differentiable ray tracing.
    Pargmann M; Ebert J; Götz M; Maldonado Quinto D; Pitz-Paal R; Kesselheim S
    Nat Commun; 2024 Aug; 15(1):6997. PubMed ID: 39143091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation and measurement of heliostat misalignment in solar power plant using vector model.
    Carretero E; Preciado J; Salinas I; Ayora I; Heras C
    Opt Express; 2019 Apr; 27(8):A257-A268. PubMed ID: 31052880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.