These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33379601)

  • 1. Measuring phase errors in the presence of scintillation.
    Crepp JR; Letchev SO; Potier SJ; Follansbee JH; Tusay NT
    Opt Express; 2020 Dec; 28(25):37721-37733. PubMed ID: 33379601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporally averaged speckle noise in wavefront sensors for beam projection in weak turbulence.
    Allan GW; Allured R; Ashcom J; Liu L; Cahoy K
    Appl Opt; 2021 Jun; 60(16):4723-4731. PubMed ID: 34143030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensated-beacon adaptive optics using least-squares phase reconstruction.
    Banet MT; Spencer MF
    Opt Express; 2020 Nov; 28(24):36902-36914. PubMed ID: 33379774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyramid and Shack-Hartmann hybrid wave-front sensor.
    Guthery CE; Hart M
    Opt Lett; 2021 Mar; 46(5):1045-1048. PubMed ID: 33649653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing.
    Robert C; Conan JM; Michau V; Fusco T; Vedrenne N
    J Opt Soc Am A Opt Image Sci Vis; 2006 Mar; 23(3):613-24. PubMed ID: 16539058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C(n)(2) profile measurement from Shack-Hartmann data.
    Védrenne N; Michau V; Robert C; Conan JM
    Opt Lett; 2007 Sep; 32(18):2659-61. PubMed ID: 17873926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation.
    Lechner D; Zepp A; Eichhorn M; Gładysz S
    Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing turbulence profile layers through celestial single-source observations.
    Laidlaw DJ; Reeves AP; Singhal H; Calvo RM
    Appl Opt; 2022 Jan; 61(2):498-504. PubMed ID: 35200889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative wavefront reconstruction for strong turbulence using Shack-Hartmann wavefront sensor measurements.
    Kim JJ; Fernandez B; Agrawal B
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):456-464. PubMed ID: 33690478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberration-resistible topological charge determination of annular-shaped optical vortex beams using Shack-Hartmann wavefront sensor.
    Wang D; Huang H; Matsui Y; Tanaka H; Toyoda H; Inoue T; Liu H
    Opt Express; 2019 Mar; 27(5):7803-7821. PubMed ID: 30876337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branch-point identification using second-moment Shack-Hartmann wavefront sensor statistics.
    Kalensky M
    Appl Opt; 2023 Aug; 62(23):G101-G111. PubMed ID: 37707069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.
    Marino J; Wöger F
    Appl Opt; 2014 Feb; 53(4):685-93. PubMed ID: 24514185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Branch-point reconstruction in laser beam projection through turbulence with finite-degree-of-freedom phase-only wave-front correction.
    Roggemann MC; Koivunen AC
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jan; 17(1):53-62. PubMed ID: 10641838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wave-front sensing and deformable-mirror control in strong scintillation.
    Roggemann MC; Koivunen AC
    J Opt Soc Am A Opt Image Sci Vis; 2000 May; 17(5):911-9. PubMed ID: 10795640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plenoptic mapping for imaging and retrieval of the complex field amplitude of a laser beam.
    Wu C; Ko J; Davis CC
    Opt Express; 2016 Dec; 24(26):29852-29871. PubMed ID: 28059371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uplink wavefront corrector system: from paper to reality.
    Martínez Rey N; Rodríguez Ramos LF; Sodnik Z
    Opt Express; 2020 Mar; 28(5):5886-5897. PubMed ID: 32225850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centroid gain compensation in Shack-Hartmann adaptive optics systems with natural or laser guide star.
    Veran JP; Herriot G
    J Opt Soc Am A Opt Image Sci Vis; 2000 Aug; 17(8):1430-9. PubMed ID: 10935871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irradiance correlations in retro-reflected beams.
    Mahon R; Ferraro MS; Goetz PG; Moore CI; Murphy J; Rabinovich WS
    Appl Opt; 2015 Nov; 54(31):F96-102. PubMed ID: 26560628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-in-the-loop wavefront sensing and control with a Collett-Wolf beacon: speckle-average phase conjugation.
    Vorontsov MA; Kolosov VV; Polnau E
    Appl Opt; 2009 Jan; 48(1):A13-29. PubMed ID: 19107151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.