These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33379601)

  • 21. Speckle mitigation for wavefront sensing in the presence of weak turbulence.
    Van Zandt NR; Spencer MF; Fiorino ST
    Appl Opt; 2019 Mar; 58(9):2300-2310. PubMed ID: 31044924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved adaptive-optics performance using polychromatic speckle mitigation.
    Van Zandt NR; Spencer MF
    Appl Opt; 2020 Feb; 59(4):1071-1081. PubMed ID: 32225243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. WISH: wavefront imaging sensor with high resolution.
    Wu Y; Sharma MK; Veeraraghavan A
    Light Sci Appl; 2019; 8():44. PubMed ID: 31069074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Horizontal Line-of-Sight Turbulence Over Near-Ground Paths and Implications for Adaptive Optics Corrections in Laser Communications.
    Levine BM; Martinsen EA; Wirth A; Jankevics A; Toledo-Quinones M; Landers F; Bruno TL
    Appl Opt; 1998 Jul; 37(21):4553-60. PubMed ID: 18285910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor.
    Wu C; Ko J; Davis CC
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):964-78. PubMed ID: 26366923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intensity-enhanced deep network wavefront reconstruction in Shack-Hartmann sensors.
    DuBose TB; Gardner DF; Watnik AT
    Opt Lett; 2020 Apr; 45(7):1699-1702. PubMed ID: 32235977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment.
    Zhang Y; Yang D; Cui X
    Appl Opt; 2004 Feb; 43(4):729-34. PubMed ID: 14960062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of phase singularities with a Shack-Hartmann wavefront sensor.
    Chen M; Roux FS; Olivier JC
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1994-2002. PubMed ID: 17728823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.
    Murphy K; Burke D; Devaney N; Dainty C
    Opt Express; 2010 Jul; 18(15):15448-60. PubMed ID: 20720924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method.
    Shinto H; Saita Y; Nomura T
    Appl Opt; 2016 Jul; 55(20):5413-8. PubMed ID: 27409319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of CMOS Pixel and Electronic Circuitry in the Performance of a Hartmann-Shack Wavefront Sensor.
    Abecassis ÚV; de Lima Monteiro DW; Salles LP; de Moraes Cruz CA; Agra Belmonte PN
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks.
    Li Z; Li X
    Opt Express; 2018 Nov; 26(24):31675-31692. PubMed ID: 30650751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence.
    Yousefi M; Kashani FD; Golmohammady S; Mashal A
    J Opt Soc Am A Opt Image Sci Vis; 2017 Dec; 34(12):2126-2137. PubMed ID: 29240086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental results of ground-layer and tomographic wavefront reconstruction from multiple laser guide stars.
    Lloyd-Hart M; Baranec C; Milton NM; Snyder M; Stalcup T; Angel JR
    Opt Express; 2006 Aug; 14(17):7541-51. PubMed ID: 19529120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor.
    Tuohy S; Podoleanu AG
    Opt Express; 2010 Feb; 18(4):3458-76. PubMed ID: 20389356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.
    Gilles L; Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A76-83. PubMed ID: 21045893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence.
    Yousefi M; Golmohammady S; Mashal A; Kashani FD
    J Opt Soc Am A Opt Image Sci Vis; 2015 Nov; 32(11):1982-92. PubMed ID: 26560913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental validation of LIFT for estimation of low-order modes in low-flux wavefront sensing.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2013 Jul; 21(14):16337-52. PubMed ID: 23938486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Demonstration of closed-loop adaptive optics with a point-diffraction interferometer in strong scintillation with optical vortices.
    Paterson C; Notaras J
    Opt Express; 2007 Oct; 15(21):13745-56. PubMed ID: 19550645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calibration of quasi-static aberrations in high-contrast astronomical adaptive optics with a pupil-modulated point-diffraction interferometer.
    Dubost N; Bharmal NA; Myers RM
    Opt Express; 2018 Apr; 26(9):11068-11083. PubMed ID: 29716034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.