BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 33379612)

  • 1. Enhanced tunable plasmonic resonance in crumpled graphene resonators loaded with gate tunable metamaterials.
    Khattak MI; Ullah Z; Al-Hasan M; Sheikh F
    Opt Express; 2020 Dec; 28(25):37860-37878. PubMed ID: 33379612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically reconfigurable architectured graphene for tunable plasmonic resonances.
    Kang P; Kim KH; Park HG; Nam S
    Light Sci Appl; 2018; 7():17. PubMed ID: 30839518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage.
    Hu H; Zhai F; Hu D; Li Z; Bai B; Yang X; Dai Q
    Nanoscale; 2015 Dec; 7(46):19493-500. PubMed ID: 26530788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental observed plasmon near-field response in isolated suspended graphene resonators.
    Zhang N; Jiang X; Fan J; Luo W; Xiang Y; Wu W; Ren M; Zhang X; Cai W; Xu J
    Nanotechnology; 2019 Dec; 30(50):505201. PubMed ID: 31491784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures.
    Hu H; Guo X; Hu D; Sun Z; Yang X; Dai Q
    Adv Sci (Weinh); 2018 Aug; 5(8):1800175. PubMed ID: 30128236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna.
    Ullah Z; Nawi I; Witjaksono G; Tansu N; Khattak MI; Junaid M; Siddiqui MA; Magsi SA
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene Plasmonic Fractal Metamaterials for Broadband Photodetectors.
    De Nicola F; Puthiya Purayil NS; Miŝeikis V; Spirito D; Tomadin A; Coletti C; Polini M; Krahne R; Pellegrini V
    Sci Rep; 2020 Apr; 10(1):6882. PubMed ID: 32327667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams.
    Luo W; Cai W; Xiang Y; Wu W; Shi B; Jiang X; Zhang N; Ren M; Zhang X; Xu J
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28605072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical nano-imaging of gate-tunable graphene plasmons.
    Chen J; Badioli M; Alonso-González P; Thongrattanasiri S; Huth F; Osmond J; Spasenović M; Centeno A; Pesquera A; Godignon P; Elorza AZ; Camara N; García de Abajo FJ; Hillenbrand R; Koppens FH
    Nature; 2012 Jul; 487(7405):77-81. PubMed ID: 22722861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-layer graphene for enhanced tunable infrared plasmonics.
    Rodrigo D; Tittl A; Limaj O; Abajo FJG; Pruneri V; Altug H
    Light Sci Appl; 2017 Jun; 6(6):e16277. PubMed ID: 30167262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive crumpled 2D material-based plasmonic biosensors.
    Faramarzi V; Ahmadi V; Hwang MT; Snapp P
    Biomed Opt Express; 2021 Jul; 12(7):4544-4559. PubMed ID: 34457431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy.
    Guo X; Hu H; Liao B; Zhu X; Yang X; Dai Q
    Nanotechnology; 2018 May; 29(18):184004. PubMed ID: 29457777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene.
    D'Apuzzo F; Piacenti AR; Giorgianni F; Autore M; Guidi MC; Marcelli A; Schade U; Ito Y; Chen M; Lupi S
    Nat Commun; 2017 Mar; 8():14885. PubMed ID: 28345584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broad electrical tuning of graphene-loaded plasmonic antennas.
    Yao Y; Kats MA; Genevet P; Yu N; Song Y; Kong J; Capasso F
    Nano Lett; 2013 Mar; 13(3):1257-64. PubMed ID: 23441688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical control of optical plasmon resonance with graphene.
    Kim J; Son H; Cho DJ; Geng B; Regan W; Shi S; Kim K; Zettl A; Shen YR; Wang F
    Nano Lett; 2012 Nov; 12(11):5598-602. PubMed ID: 23025816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity.
    Kim M; Kang P; Leem J; Nam S
    Nanoscale; 2017 Mar; 9(12):4058-4065. PubMed ID: 28116377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable plasmon-induced absorption in an integrated graphene nanoribbon side-coupled waveguide.
    Lin Q; Zhai X; Su Y; Meng H; Wang L
    Appl Opt; 2017 Dec; 56(34):9536-9541. PubMed ID: 29216070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large-Area Nanopatterned Graphene.
    Safaei A; Chandra S; Leuenberger MN; Chanda D
    ACS Nano; 2019 Jan; 13(1):421-428. PubMed ID: 30525437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.