These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33379639)

  • 1. Fast self-learning modulation recognition method for smart underwater optical communication systems.
    Zhang L; Zhou X; Du J; Tian P
    Opt Express; 2020 Dec; 28(25):38223-38240. PubMed ID: 33379639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthogonal Frequency Division Multiplexing Techniques Comparison for Underwater Optical Wireless Communication Systems.
    Lian J; Gao Y; Wu P; Lian D
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient capacity enhancement using OFDM with interleaved subcarrier number modulation in bandlimited UOWC systems.
    Chen J; Deng B; Chen C; Liu M; Fu HY; Haas H
    Opt Express; 2023 Sep; 31(19):30723-30734. PubMed ID: 37710610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing OFDM with index modulation using heuristic geometric constellation shaping and generalized interleaving for underwater VLC.
    Zhao Y; Chen C; Zhong X; Cao H; Liu M; Lin B; Savović S
    Opt Express; 2024 Apr; 32(8):13720-13732. PubMed ID: 38859334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal DCO-OFDM signal shaping with double-sided clipping in visible light communications.
    Ling X; Li S; Ge P; Wang J; Chi N; Gao X
    Opt Express; 2020 Oct; 28(21):30391-30409. PubMed ID: 33115042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-learning-aided orthogonal frequency division multiplexing for underwater acoustic communications.
    Zhang Y; Wang H; Li C; Chen D; Meriaudeau F
    J Acoust Soc Am; 2021 Jun; 149(6):4596. PubMed ID: 34241419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse polarity optical-OFDM (RPO-OFDM): dimming compatible OFDM for gigabit VLC links.
    Elgala H; Little TD
    Opt Express; 2013 Oct; 21(20):24288-99. PubMed ID: 24104338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation.
    Liu X; Yi S; Zhou X; Fang Z; Qiu ZJ; Hu L; Cong C; Zheng L; Liu R; Tian P
    Opt Express; 2017 Oct; 25(22):27937-27947. PubMed ID: 29092261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications.
    Bai J; Li Y; Yi Y; Cheng W; Du H
    Opt Express; 2017 Oct; 25(20):24630-24638. PubMed ID: 29041408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High fidelity underwater wireless optical communication with a phase-conjugated frame structure.
    Qin D; Li Y; Sun Y; Li Y; Ye N; Wang M; Zhang J
    Appl Opt; 2020 May; 59(13):4000-4007. PubMed ID: 32400674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication.
    Oubei HM; Duran JR; Janjua B; Wang HY; Tsai CT; Chi YC; Ng TK; Kuo HC; He JH; Alouini MS; Lin GR; Ooi BS
    Opt Express; 2015 Sep; 23(18):23302-9. PubMed ID: 26368431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical OFDM for SiPM-Based Underwater Optical Wireless Communication Links.
    Essalih T; Khalighi MA; Hranilovic S; Akhouayri H
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction.
    Chen X; Lyu W; Zhang Z; Zhao J; Xu J
    Opt Express; 2020 Aug; 28(16):23784-23795. PubMed ID: 32752370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of a two-path parallel scheme for m-QAM-OFDM transmission through a turbulent-air-water channel in optical wireless communications.
    Zhang L; Wang H; Zhao X; Lu F; Zhao X; Shao X
    Opt Express; 2019 Mar; 27(5):6672-6688. PubMed ID: 30876247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of non-line-of-sight underwater optical wireless communications with wavy surface.
    Fang C; Li S; Wang Y; Wang K
    Opt Express; 2024 Feb; 32(4):4799-4815. PubMed ID: 38439223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of angular pointing error on BER performance of underwater optical wireless links.
    Boluda-Ruiz R; García-Zambrana A; Castillo-Vázquez B; Hranilovic S
    Opt Express; 2020 Nov; 28(23):34606-34622. PubMed ID: 33182925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secure and noise-resistant underwater wireless optical communication based on spectrum spread and encrypted OFDM modulation.
    Zhang J; Gao G; Zhang J; Guo Y
    Opt Express; 2022 May; 30(10):17140-17155. PubMed ID: 36221543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Adaptive Modulation Schemes for Underwater Acoustic OFDM Communication.
    Barua S; Rong Y; Nordholm S; Chen P
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capacity of underwater optical wireless communication systems over salinity-induced oceanic turbulence channels with ISI.
    Boluda-Ruiz R; Salcedo-Serrano P; Castillo-Vázquez B; García-Zambrana A; Garrido-Balsells JM
    Opt Express; 2021 Jul; 29(15):23142-23158. PubMed ID: 34614584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation Signal Recognition of Underwater Acoustic Communication Based on Archimedes Optimization Algorithm and Random Forest.
    Wang M; Zhu Z; Qian G
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.