These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33379668)

  • 1. Compensation of color breaking in bi-focal depth-switchable integral floating augmented reality display with a geometrical phase lens.
    Choi HJ; Park Y; Lee H; Joo KI; Lee TH; Hong S; Kim HR
    Opt Express; 2020 Nov; 28(24):35548-35560. PubMed ID: 33379668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flicker-free dual-volume augmented reality display using a pixelated interwoven integral floating technique with a geometric phase lens.
    Lee H; Lee JW; Shin J; Hong S; Kim HR; Choi HJ
    Opt Express; 2022 Nov; 30(23):42186-42198. PubMed ID: 36366677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatic aberration correction in bi-focal augmented reality display by the multi-layer Pancharatnam-Berry phase lens.
    Ma Y; Zhang W; Liu Y; Tian T; Luo D
    Opt Express; 2022 May; 30(11):18772-18780. PubMed ID: 36221671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integral floating display systems for augmented reality.
    Hong J; Min SW; Lee B
    Appl Opt; 2012 Jun; 51(18):4201-9. PubMed ID: 22722298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional electro-floating display system using an integral imaging method.
    Min SW; Hahn M; Kim J; Lee B
    Opt Express; 2005 Jun; 13(12):4358-69. PubMed ID: 19495351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast-response switchable lens for 3D and wearable displays.
    Lee YH; Peng F; Wu ST
    Opt Express; 2016 Jan; 24(2):1668-75. PubMed ID: 26832545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth plane adaptive integral imaging system using a vari-focal liquid lens array for realizing augmented reality.
    Shin D; Kim C; Koo G; Hyub Won Y
    Opt Express; 2020 Feb; 28(4):5602-5616. PubMed ID: 32121777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization-dependent liquid crystalline polymeric lens array with aberration-improved aspherical curvature for low 3D crosstalk in 2D/3D switchable mobile multi-view display.
    Park MK; Park H; Joo KI; Lee TH; Kim HR
    Opt Express; 2018 Aug; 26(16):20281-20297. PubMed ID: 30119340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth-extended integral imaging system based on a birefringence lens array providing polarization switchable focal lengths.
    Park CK; Lee SS; Hwang YS
    Opt Express; 2009 Oct; 17(21):19047-54. PubMed ID: 20372640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented reality display system using modulated moiré imaging technique.
    Lou Y; Hu J; Chen A; Wu F
    Appl Opt; 2021 Feb; 60(4):A306-A312. PubMed ID: 33690382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Color moiré reduction and resolution enhancement of flat-panel integral three-dimensional display.
    Sasaki H; Okaichi N; Watanabe H; Kano M; Miura M; Kawakita M; Mishina T
    Opt Express; 2019 Mar; 27(6):8488-8503. PubMed ID: 31052665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality.
    Hong K; Yeom J; Jang C; Hong J; Lee B
    Opt Lett; 2014 Jan; 39(1):127-30. PubMed ID: 24365839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens.
    Nam SW; Moon S; Lee B; Kim D; Lee S; Lee CK; Lee B
    Opt Express; 2020 Oct; 28(21):30836-30850. PubMed ID: 33115076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holographic multiplane augmented reality head-up display with switchable display modes based on polymer dispersed liquid crystal.
    Wang Z; Pang Y; Su Y; Feng Q; Lv G
    Appl Opt; 2024 Jan; 63(3):692-698. PubMed ID: 38294381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact three-dimensional head-mounted display system with Savart plate.
    Lee CK; Moon S; Lee S; Yoo D; Hong JY; Lee B
    Opt Express; 2016 Aug; 24(17):19531-44. PubMed ID: 27557230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planar Alvarez tunable lens based on polymetric liquid crystal Pancharatnam-Berry optical elements.
    Chen S; Lin J; He Z; Li Y; Su Y; Wu ST
    Opt Express; 2022 Sep; 30(19):34655-34664. PubMed ID: 36242473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical viewing angle enhancement for the 360  degree integral-floating display using an anamorphic optic system.
    Erdenebat MU; Kwon KC; Yoo KH; Baasantseren G; Park JH; Kim ES; Kim N
    Opt Lett; 2014 Apr; 39(8):2326-9. PubMed ID: 24978984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viewing region maximization of an integral floating display through location adjustment of viewing window.
    Kim J; Min SW; Lee B
    Opt Express; 2007 Oct; 15(20):13023-34. PubMed ID: 19550571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System.
    Huang J; Xue Q; Wang Z; Gao J
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.