These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33379712)

  • 1. Absolute angular measurement with optical frequency comb using a dispersive interferometry.
    Liang X; Lin J; Wu T; Yang L; Wang Y; Liu Y; Zhu J
    Opt Express; 2020 Nov; 28(24):36095-36108. PubMed ID: 33379712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-degree-of-freedom autocollimator based on a combined target reflector.
    Guo Y; Cheng H; Wen Y; Feng Y
    Appl Opt; 2020 Mar; 59(8):2262-2269. PubMed ID: 32225756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute angular position measurement by dual-comb spectroscopy of an autocollimation diffracted beam.
    Zhou S; Jiang R; Zhang R; Shi L; Zhang D; Wu G
    Opt Lett; 2023 Mar; 48(5):1104-1107. PubMed ID: 36857224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of Distance Measurement Based on Dispersive Interferometry Using Femtosecond Optical Frequency Comb.
    Niu Q; Song M; Zheng J; Jia L; Liu J; Ni L; Nian J; Cheng X; Zhang F; Qu X
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional angle measurement with sub-arcsecond precision and MHz update rate using heterodyne interferometry with optical frequency comb.
    Lin C; Zhou S; Shi L; Yang Y; Wu G
    Opt Lett; 2024 Feb; 49(3):526-529. PubMed ID: 38300050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arbitrary distance measurement without dead zone by chirped pulse spectrally interferometry using a femtosecond optical frequency comb.
    Niu Q; Zheng J; Cheng X; Liu J; Jia L; Ni L; Nian J; Zhang F; Qu X
    Opt Express; 2022 Sep; 30(19):35029-35040. PubMed ID: 36242504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Displacement and Angle Sensor with Ultra-High Compactness Based on Self-Imaging Effect of Optical Microgratings.
    Zhang M; Yang H; Niu Q; Zhang X; Yang J; Lai J; Fan C; Li M; Xin C
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement.
    van den Berg SA; van Eldik S; Bhattacharya N
    Sci Rep; 2015 Sep; 5():14661. PubMed ID: 26419282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.
    Wang G; Tan L; Yan S
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29414897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute distance measurement with a gain-switched dual optical frequency comb.
    Hei K; Anandarajah K; Martin EP; Shi G; Anandarajah PM; Bhattacharya N
    Opt Express; 2021 Mar; 29(6):8108-8116. PubMed ID: 33820263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Algorithms of Data Processing for Dispersive Interferometry Using a Femtosecond Laser.
    Liu T; Wu J; Suzuki A; Sato R; Matsukuma H; Gao W
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small angular displacement measurement based on an autocollimator and a common-path compensation principle.
    Li K; Kuang C; Liu X
    Rev Sci Instrum; 2013 Jan; 84(1):015108. PubMed ID: 23387696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sinusoidal phase modulating absolute distance measurement interferometer combining frequency-sweeping and multi-wavelength interferometry.
    Zhang S; Xu Z; Chen B; Yan L; Xie J
    Opt Express; 2018 Apr; 26(7):9273-9284. PubMed ID: 29715881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underwater distance measurement using frequency comb laser.
    Zhai X; Meng Z; Zhang H; Xu X; Qian Z; Xue B; Wu H
    Opt Express; 2019 Mar; 27(5):6757-6769. PubMed ID: 30876255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an angular displacement measurement technique through birefringence heterodyne interferometry.
    Hsieh HL; Lee JY; Chen LY; Yang Y
    Opt Express; 2016 Apr; 24(7):6802-13. PubMed ID: 27136979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comb-referenced frequency-sweeping interferometry for precisely measuring large stepped structures.
    Zhang W; Wei H; Yang H; Wu X; Li Y
    Appl Opt; 2018 Feb; 57(5):1247-1253. PubMed ID: 29469871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser.
    Li J; Feng Q; Bao C; Zhao Y
    Opt Express; 2018 Feb; 26(3):2535-2545. PubMed ID: 29401792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External right-angle measurement using a two-autocollimator system.
    He Y; Liu Q; He JJ; He ZJ; Hu ZZ; Duan HZ; Yeh HC
    Appl Opt; 2019 Feb; 58(4):1158-1163. PubMed ID: 30874167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Space position measurement using long-path heterodyne interferometer with optical frequency comb.
    Wang X; Takahashi S; Takamasu K; Matsumoto H
    Opt Express; 2012 Jan; 20(3):2725-32. PubMed ID: 22330509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Sensors for Multi-Axis Angle and Displacement Measurement Using Grating Reflectors.
    Shimizu Y; Matsukuma H; Gao W
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.