These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33379717)

  • 1. Shack-Hartmann wavefront sensing using spatial-temporal data from an event-based image sensor.
    Kong F; Lambert A; Joubert D; Cohen G
    Opt Express; 2020 Nov; 28(24):36159-36175. PubMed ID: 33379717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional neural network for improved event-based Shack-Hartmann wavefront reconstruction.
    Grose M; Schmidt JD; Hirakawa K
    Appl Opt; 2024 Jun; 63(16):E35-E47. PubMed ID: 38856590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2015 Nov; 23(22):28619-33. PubMed ID: 26561131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.
    Wang S; Yang P; Xu B; Dong L; Ao M
    Opt Express; 2015 Feb; 23(4):5052-64. PubMed ID: 25836540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation.
    Lechner D; Zepp A; Eichhorn M; Gładysz S
    Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.
    Robert C; Michau V; Fleury B; Magli S; Vial L
    Opt Express; 2012 Jul; 20(14):15636-53. PubMed ID: 22772257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed Shack-Hartmann wavefront sensor design with commercial off-the-shelf optics.
    Widiker JJ; Harris SR; Duncan BD
    Appl Opt; 2006 Jan; 45(2):383-95. PubMed ID: 16422170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.
    Baranec C; Dekany R
    Appl Opt; 2008 Oct; 47(28):5155-62. PubMed ID: 18830305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the three-dimensional microscope point spread function using a Shack-Hartmann wavefront sensor.
    Beverage JL; Shack RV; Descour MR
    J Microsc; 2002 Jan; 205(Pt 1):61-75. PubMed ID: 11856382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method.
    Shinto H; Saita Y; Nomura T
    Appl Opt; 2016 Jul; 55(20):5413-8. PubMed ID: 27409319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The range of local wavefront curvatures measurable with Shack-Hartmann wavefront sensors.
    Campbell CE
    Clin Exp Optom; 2009 May; 92(3):187-93. PubMed ID: 19462501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving centroiding by super-resolution reconstruction of sodium layer density in Shack-Hartmann wavefront sensors.
    Mello AJ; Pipa DR
    Appl Opt; 2016 May; 55(14):3701-10. PubMed ID: 27168279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations.
    Aftab M; Choi H; Liang R; Kim DW
    Opt Express; 2018 Dec; 26(26):34428-34441. PubMed ID: 30650864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angle-based wavefront sensing enabled by the near fields of flat optics.
    Yi S; Xiang J; Zhou M; Wu Z; Yang L; Yu Z
    Nat Commun; 2021 Oct; 12(1):6002. PubMed ID: 34650050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting wavefront error from Shack-Hartmann images using spatial demodulation.
    Sarver EJ; Schwiegerling J; Applegate RA
    J Refract Surg; 2006 Nov; 22(9):949-53. PubMed ID: 17124895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WISH: wavefront imaging sensor with high resolution.
    Wu Y; Sharma MK; Veeraraghavan A
    Light Sci Appl; 2019; 8():44. PubMed ID: 31069074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Method Used to Improve the Dynamic Range of Shack-Hartmann Wavefront Sensor in Presence of Large Aberration.
    Yang W; Wang J; Wang B
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Error propagation: a comparison of Shack-Hartmann and curvature sensors.
    Kellerer AN; Kellerer AM
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):801-7. PubMed ID: 21532691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.