These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33379774)

  • 1. Compensated-beacon adaptive optics using least-squares phase reconstruction.
    Banet MT; Spencer MF
    Opt Express; 2020 Nov; 28(24):36902-36914. PubMed ID: 33379774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring phase errors in the presence of scintillation.
    Crepp JR; Letchev SO; Potier SJ; Follansbee JH; Tusay NT
    Opt Express; 2020 Dec; 28(25):37721-37733. PubMed ID: 33379601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation.
    Lechner D; Zepp A; Eichhorn M; Gładysz S
    Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensity-enhanced deep network wavefront reconstruction in Shack-Hartmann sensors.
    DuBose TB; Gardner DF; Watnik AT
    Opt Lett; 2020 Apr; 45(7):1699-1702. PubMed ID: 32235977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
    Steinbock MJ; Hyde MW; Schmidt JD
    Appl Opt; 2014 Jun; 53(18):3821-31. PubMed ID: 24979411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved adaptive-optics performance using polychromatic speckle mitigation.
    Van Zandt NR; Spencer MF
    Appl Opt; 2020 Feb; 59(4):1071-1081. PubMed ID: 32225243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor.
    Shatokhina I; Obereder A; Rosensteiner M; Ramlau R
    Appl Opt; 2013 Apr; 52(12):2640-52. PubMed ID: 23669672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal adaptive optics imaging with a pyramid wavefront sensor.
    Brunner E; Shatokhina J; Shirazi MF; Drexler W; Leitgeb R; Pollreisz A; Hitzenberger CK; Ramlau R; Pircher M
    Biomed Opt Express; 2021 Oct; 12(10):5969-5990. PubMed ID: 34745716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of CMOS Pixel and Electronic Circuitry in the Performance of a Hartmann-Shack Wavefront Sensor.
    Abecassis ÚV; de Lima Monteiro DW; Salles LP; de Moraes Cruz CA; Agra Belmonte PN
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.
    Baranec C; Dekany R
    Appl Opt; 2008 Oct; 47(28):5155-62. PubMed ID: 18830305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing.
    Robert C; Conan JM; Michau V; Fusco T; Vedrenne N
    J Opt Soc Am A Opt Image Sci Vis; 2006 Mar; 23(3):613-24. PubMed ID: 16539058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centroid gain compensation in Shack-Hartmann adaptive optics systems with natural or laser guide star.
    Veran JP; Herriot G
    J Opt Soc Am A Opt Image Sci Vis; 2000 Aug; 17(8):1430-9. PubMed ID: 10935871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of real-time depth-resolved Shack-Hartmann measurements.
    Wang J; Podoleanu AG
    Opt Lett; 2012 Dec; 37(23):4862-4. PubMed ID: 23202071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.
    Gilles L; Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A76-83. PubMed ID: 21045893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor.
    Tuohy S; Podoleanu AG
    Opt Express; 2010 Feb; 18(4):3458-76. PubMed ID: 20389356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target-in-the-loop wavefront sensing and control with a Collett-Wolf beacon: speckle-average phase conjugation.
    Vorontsov MA; Kolosov VV; Polnau E
    Appl Opt; 2009 Jan; 48(1):A13-29. PubMed ID: 19107151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iterative wavefront reconstruction for strong turbulence using Shack-Hartmann wavefront sensor measurements.
    Kim JJ; Fernandez B; Agrawal B
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):456-464. PubMed ID: 33690478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of phase singularities with a Shack-Hartmann wavefront sensor.
    Chen M; Roux FS; Olivier JC
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1994-2002. PubMed ID: 17728823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algorithm and experiment of whole-aperture wavefront reconstruction from annular subaperture Hartmann-Shack gradient data.
    Xu H; Xian H; Zhang Y
    Opt Express; 2010 Jun; 18(13):13431-43. PubMed ID: 20588474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.