These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33379920)

  • 1. Elastic wave velocity dispersion in polycrystals with elongated grains: Theoretical and numerical analysis.
    Huang M; Sha G; Huthwaite P; Rokhlin SI; Lowe MJS
    J Acoust Soc Am; 2020 Dec; 148(6):3645. PubMed ID: 33379920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation and velocity of elastic waves in polycrystals with generally anisotropic grains: Analytic and numerical modeling.
    Sha G; Huang M; Lowe MJS; Rokhlin SI
    J Acoust Soc Am; 2020 Apr; 147(4):2442. PubMed ID: 32359302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-element and semi-analytical study of elastic wave propagation in strongly scattering polycrystals.
    Huang M; Huthwaite P; Rokhlin SI; Lowe MJS
    Proc Math Phys Eng Sci; 2022 Feb; 478(2258):20210850. PubMed ID: 35221773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal wave attenuation in polycrystals with elongated grains: 3D numerical and analytical modeling.
    Huang M; Sha G; Huthwaite P; Rokhlin SI; Lowe MJS
    J Acoust Soc Am; 2021 Apr; 149(4):2377. PubMed ID: 33940885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element evaluation of a simple model for elastic waves in strongly scattering elongated polycrystals.
    Huang M; Rokhlin SI; Lowe MJS
    JASA Express Lett; 2021 Jun; 1(6):064002. PubMed ID: 36154364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials.
    Yang L; Lobkis OI; Rokhlin SI
    Ultrasonics; 2011 Aug; 51(6):697-708. PubMed ID: 21396672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appraising scattering theories for polycrystals of any symmetry using finite elements.
    Huang M; Rokhlin SI; Lowe MJS
    Philos Trans A Math Phys Eng Sci; 2022 Sep; 380(2231):20210382. PubMed ID: 35858092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media with statistically equiaxed grains.
    Ryzy M; Grabec T; Sedlák P; Veres IA
    J Acoust Soc Am; 2018 Jan; 143(1):219. PubMed ID: 29390780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Far-field scattering model for wave propagation in random media.
    Rokhlin SI; Li J; Sha G
    J Acoust Soc Am; 2015 May; 137(5):2655-69. PubMed ID: 25994697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of texture and grain shape on ultrasonic backscattering in polycrystals.
    Li J; Yang L; Rokhlin SI
    Ultrasonics; 2014 Sep; 54(7):1789-803. PubMed ID: 24630850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximizing the accuracy of finite element simulation of elastic wave propagation in polycrystals.
    Huang M; Sha G; Huthwaite P; Rokhlin SI; Lowe MJS
    J Acoust Soc Am; 2020 Oct; 148(4):1890. PubMed ID: 33138527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic backscattering in polycrystals with elongated single phase and duplex microstructures.
    Lobkis OI; Yang L; Li J; Rokhlin SI
    Ultrasonics; 2012 Aug; 52(6):694-705. PubMed ID: 22209089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic backscattering model for Rayleigh waves in polycrystals with Born and independent scattering approximations.
    Li S; Huang M; Song Y; Lan B; Li X
    Ultrasonics; 2024 May; 140():107297. PubMed ID: 38520818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ultrasonic attenuation within two- and three-dimensional polycrystalline media.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2020 Jan; 100():105980. PubMed ID: 31479969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mode-converted ultrasonic scattering in polycrystals with elongated grains.
    Arguelles AP; Kube CM; Hu P; Turner JA
    J Acoust Soc Am; 2016 Sep; 140(3):1570. PubMed ID: 27914376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal scaling of transverse wave attenuation in polycrystals.
    Sha G; Rokhlin SI
    Ultrasonics; 2018 Aug; 88():84-96. PubMed ID: 29602029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and numerical modeling of Rayleigh wave scattering by an elastic inclusion.
    Li S; Huang M; Song Y; Lan B; Li X
    J Acoust Soc Am; 2023 Apr; 153(4):2336. PubMed ID: 37092942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical model of longitudinal wave scattering in polycrystals.
    Ghoshal G; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1419-28. PubMed ID: 19574152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation and dispersion of leaky Rayleigh wave in polycrystals.
    Li S; Song Y; Li X
    J Acoust Soc Am; 2022 Dec; 152(6):3271. PubMed ID: 36586881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface acoustic wave attenuation in polycrystals: Numerical modeling using a statistical digital twin of an actual sample.
    Grabec T; Veres IA; Ryzy M
    Ultrasonics; 2022 Feb; 119():106585. PubMed ID: 34598096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.