These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33379928)

  • 1. An extended transfer matrix method for measuring acoustical properties of porous materials beyond the cut-off frequency.
    Chen L; Du L; Wang X; Sun X
    J Acoust Soc Am; 2020 Dec; 148(6):3772. PubMed ID: 33379928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of characteristic impedance and wave number of porous material using pulse-tube and transfer-matrix methods.
    Sun L; Hou H; Dong LY; Wan FR
    J Acoust Soc Am; 2009 Dec; 126(6):3049-56. PubMed ID: 20000918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials.
    Song BH; Bolton JS
    J Acoust Soc Am; 2000 Mar; 107(3):1131-52. PubMed ID: 10738770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.
    Prisutova J; Horoshenkov K; Groby JP; Brouard B
    J Acoust Soc Am; 2014 Dec; 136(6):2947. PubMed ID: 25480044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal incidence sound transmission loss evaluation by upstream surface impedance measurements.
    Panneton R
    J Acoust Soc Am; 2009 Mar; 125(3):1490-7. PubMed ID: 19275307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modal decomposition method for acoustic impedance testing in square ducts.
    Schultz T; Cattafesta LN; Sheplak M
    J Acoust Soc Am; 2006 Dec; 120(6):3750-8. PubMed ID: 17225402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests).
    Horoshenkov KV; Khan A; Bécot FX; Jaouen L; Sgard F; Renault A; Amirouche N; Pompoli F; Prodi N; Bonfiglio P; Pispola G; Asdrubali F; Hübelt J; Atalla N; Amédin CK; Lauriks W; Boeckx L
    J Acoust Soc Am; 2007 Jul; 122(1):345-53. PubMed ID: 17614494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Measurement of the True Plane-Wave Shielding Effectiveness of Thick Polymer Composite Materials via Rectangular Waveguides.
    Moučka R; Goňa S; Sedlačík AM
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31581519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal incidence sound transmission loss evaluation with a general upstream tube wave decomposition formula.
    Wei Z; Hou H; Gao N; Huang Y; Yang J
    J Acoust Soc Am; 2018 Oct; 144(4):2344. PubMed ID: 30404492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general wave decomposition formula for the measurement of normal incidence sound transmission loss in impedance tube.
    Salissou Y; Panneton R
    J Acoust Soc Am; 2009 Apr; 125(4):2083-90. PubMed ID: 19354384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave localization in two-dimensional porous phononic crystals with one-dimensional aperiodicity.
    Yan ZZ; Zhang C
    Ultrasonics; 2012 Jul; 52(5):598-604. PubMed ID: 22218222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudo-interface Rayleigh wave on a permeable porous medium/vacuum interface.
    Gerasik V; Stastna M
    J Acoust Soc Am; 2014 May; 135(5):2625-33. PubMed ID: 24815246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-plane transverse waves propagation in nanoscale periodic layered piezoelectric structures.
    Chen AL; Yan DJ; Wang YS; Zhang C
    Ultrasonics; 2016 Feb; 65():154-64. PubMed ID: 26518526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An impedance tube technique for estimating the insertion loss of earplugs.
    Carillo K; Doutres O; Sgard F
    J Acoust Soc Am; 2024 Aug; 156(2):898-911. PubMed ID: 39120866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the vibrational modes of edge-constrained fibrous samples placed in a standing wave tube.
    Song BH; Bolton JS
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1833-49. PubMed ID: 12703696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of high-frequency wave propagation in structured materials.
    Young R; Harris P; Dawson A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):547-66. PubMed ID: 21429846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some Theoretical and Experimental Extensions Based on the Properties of the Intrinsic Transfer Matrix.
    Cretu N; Pop MI; Andia Prado HS
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ironless transducer for measuring the mechanical properties of porous materials.
    Doutres O; Dauchez N; Genevaux JM; Lemarquand G; Mezil S
    Rev Sci Instrum; 2010 May; 81(5):055101. PubMed ID: 20515166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the acoustical properties of locally reactive finite materials using the boundary element method.
    Luo ZW; Zheng CJ; Zhang YB; Bi CX
    J Acoust Soc Am; 2020 Jun; 147(6):3917. PubMed ID: 32611149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.