These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33379969)

  • 1. A Newton iterative optimization combined with window loop calculation algorithm for estimating accelerometer bias based on gravitational apparent motion with excitation of swinging motion.
    Huang Y; Liu X; Zhang Y; Zhao M; Yan J
    Rev Sci Instrum; 2020 Dec; 91(12):125102. PubMed ID: 33379969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An iterative optimization method for estimating accelerometer bias based on gravitational apparent motion with excitation of swinging motion.
    Zhang T; Huang Y; Li H; Wang S; Guo X; Liu X
    Rev Sci Instrum; 2019 Jan; 90(1):015102. PubMed ID: 30709168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved self-alignment method for strapdown inertial navigation system based on gravitational apparent motion and dual-vector.
    Liu X; Zhao Y; Liu X; Yang Y; Song Q; Liu Z
    Rev Sci Instrum; 2014 Dec; 85(12):125108. PubMed ID: 25554327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Self-Alignment Algorithm for SINS Based on Gravitational Apparent Motion and Sensor Data Denoising.
    Liu Y; Xu X; Liu X; Yao Y; Wu L; Sun J
    Sensors (Basel); 2015 Apr; 15(5):9827-53. PubMed ID: 25923932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-alignment method for gravitational apparent acceleration identification and accelerometer bias estimation based on repeated navigation solution.
    Huang Y; Liu X; Wang Z; Wu X; Liu W
    Rev Sci Instrum; 2021 Jun; 92(6):064505. PubMed ID: 34243492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strapdown Inertial Navigation Systems for Positioning Mobile Robots-MEMS Gyroscopes Random Errors Analysis Using Allan Variance Method.
    Rudyk AV; Semenov AO; Kryvinska N; Semenova OO; Kvasnikov VP; Safonyk AP
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Kalman Filter for SINS Self-Alignment Based on Vector Observation.
    Xu X; Xu X; Zhang T; Li Y; Tong J
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28146059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of improved fifth-degree cubature Kalman filter in the nonlinear initial alignment of strapdown inertial navigation system.
    Zhang T; Wang J; Jin B; Li Y
    Rev Sci Instrum; 2019 Jan; 90(1):015111. PubMed ID: 30709166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistage Attitude Determination Alignment for Velocity-Aided In-Motion Strapdown Inertial Navigation System with Different Velocity Models.
    Li S; Gao Y; Liu M
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Fast Self-Calibration Method for Hybrid Inertial Navigation System under Stationary Condition.
    Liu B; Wei S; Su G; Wang J; Lu J
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29695041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GAM-Based Mooring Alignment for SINS Based on An Improved CEEMD Denoising Method.
    Rong H; Gao Y; Guan L; Zhang Q; Zhang F; Li N
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31443296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Three-Stage Accelerometer Self-Calibration Technique for Space-Stable Inertial Navigation Systems.
    Wu Q; Wu R; Han F; Zhang R
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Alignment Method for Strapdown Inertial Navigation Systems Assisted by Doppler Radar on a Vehicle-Borne Moving Base.
    Yang B; Xi J; Yang J; Xue L
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heading-sensitive azimuth error analysis and scheme modification for the multi-position alignment of a fiber-optic gyro strapdown inertial navigation system.
    Jiang Y; Li S; Fu Q; Yan G; Xie B
    Appl Opt; 2022 May; 61(15):4259-4269. PubMed ID: 36256262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Optimization-Based Initial Alignment and Calibration Algorithm of Land-Vehicle SINS In-Motion.
    Gao K; Ren S; Chen X; Wang Z
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29958480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial Alignment Algorithm Based on the DMCS Method in Single-Axis RSINS with Large Azimuth Misalignment Angles for Submarines.
    Xia XW; Sun Q
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30004450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust adaptive unscented Kalman filter and its application in initial alignment for body frame velocity aided strapdown inertial navigation system.
    Zhu B; Wu M; Xu J; Li J
    Rev Sci Instrum; 2018 Nov; 89(11):115102. PubMed ID: 30501286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Alignment Method for the Strapdown Inertial Navigation System (SINS).
    Liu M; Gao Y; Li G; Guang X; Li S
    Sensors (Basel); 2016 Apr; 16(5):. PubMed ID: 27136565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Multistage In-Motion Attitude Determination Alignment Method for Strapdown Inertial Navigation System.
    Qiao H; Liu M; Meng H; Wang M; Ke W
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-flight alignment using H ∞ filter for strapdown INS on aircraft.
    Pei FJ; Liu X; Zhu L
    ScientificWorldJournal; 2014; 2014():820305. PubMed ID: 24511300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.