These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33380008)

  • 1. One-dimensional convolutional neural network (1D-CNN) image reconstruction for electrical impedance tomography.
    Li X; Lu R; Wang Q; Wang J; Duan X; Sun Y; Li X; Zhou Y
    Rev Sci Instrum; 2020 Dec; 91(12):124704. PubMed ID: 33380008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Imaging Resolution of Electrical Impedance Tomography Using Artificial Neural Networks for Image Reconstruction.
    Huang SW; Cheng HM; Lin SF
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1551-1554. PubMed ID: 31946190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved low-dose positron emission tomography image reconstruction using deep learned prior.
    Wang X; Zhou L; Wang Y; Jiang H; Ye H
    Phys Med Biol; 2021 May; 66(11):. PubMed ID: 33882466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks.
    Hamilton SJ; Hauptmann A
    IEEE Trans Med Imaging; 2018 Oct; 37(10):2367-2377. PubMed ID: 29994023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced-Current Learning Method for Nonlinear Reconstructions in Electrical Impedance Tomography.
    Wei Z; Chen X
    IEEE Trans Med Imaging; 2020 May; 39(5):1326-1334. PubMed ID: 31647424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beltrami-net: domain-independent deep D-bar learning for absolute imaging with electrical impedance tomography (a-EIT).
    Hamilton SJ; Hänninen A; Hauptmann A; Kolehmainen V
    Physiol Meas; 2019 Jul; 40(7):074002. PubMed ID: 31091516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction.
    Gupta H; Jin KH; Nguyen HQ; McCann MT; Unser M
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1440-1453. PubMed ID: 29870372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning.
    Chan JW; Kearney V; Haaf S; Wu S; Bogdanov M; Reddick M; Dixit N; Sudhyadhom A; Chen J; Yom SS; Solberg TD
    Med Phys; 2019 May; 46(5):2204-2213. PubMed ID: 30887523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trajectory-level fog detection based on in-vehicle video camera with TensorFlow deep learning utilizing SHRP2 naturalistic driving data.
    Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105521. PubMed ID: 32408146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sparse image reconstruction of intracerebral hemorrhage with electrical impedance tomography.
    Shi Y; Wu Y; Wang M; Tian Z; Kong X; He X
    J Med Imaging (Bellingham); 2021 Jan; 8(1):014501. PubMed ID: 33457443
    [No Abstract]   [Full Text] [Related]  

  • 14. Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging.
    Xu J; Liu H
    Phys Med Biol; 2019 Sep; 64(18):185016. PubMed ID: 31292287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network.
    Lin Z; Gong T; Wang K; Li Z; He H; Tong Q; Yu F; Zhong J
    Med Phys; 2019 Jul; 46(7):3101-3116. PubMed ID: 31009085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of PET Attenuation Map for Whole-Body Time-of-Flight
    Hwang D; Kang SK; Kim KY; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesizing images from multiple kernels using a deep convolutional neural network.
    Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH
    Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances of deep learning in electrical impedance tomography image reconstruction.
    Zhang T; Tian X; Liu X; Ye J; Fu F; Shi X; Liu R; Xu C
    Front Bioeng Biotechnol; 2022; 10():1019531. PubMed ID: 36588934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Deep residual convolutional neural network for recognition of electrocardiogram signal arrhythmias].
    Li D; Zhang H; Liu Z; Huang J; Wang T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):189-198. PubMed ID: 31016934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep neural network for estimating the bladder boundary using electrical impedance tomography.
    Konki SK; Khambampati AK; Sharma SK; Kim KY
    Physiol Meas; 2020 Dec; 41(11):115003. PubMed ID: 32726770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.