These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33380041)

  • 1. Do reservoir computers work best at the edge of chaos?
    Carroll TL
    Chaos; 2020 Dec; 30(12):121109. PubMed ID: 33380041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing critical rules at the 'edge of chaos'.
    Hiett PJ
    Biosystems; 1999 Feb; 49(2):127-42. PubMed ID: 10203193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lambda and the edge of chaos in recurrent neural networks.
    Seifter J; Reggia JA
    Artif Life; 2015; 21(1):55-71. PubMed ID: 25514434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving criticality for reservoir computing using environment-induced explosive death.
    Mandal S; Shrimali MD
    Chaos; 2021 Mar; 31(3):031101. PubMed ID: 33810729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational capabilities at the edge of chaos for one dimensional systems undergoing continuous transitions.
    Estevez-Rams E; Estevez-Moya D; Garcia-Medina K; Lora-Serrano R
    Chaos; 2019 Apr; 29(4):043105. PubMed ID: 31042953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization of chaotic systems and their machine-learning models.
    Weng T; Yang H; Gu C; Zhang J; Small M
    Phys Rev E; 2019 Apr; 99(4-1):042203. PubMed ID: 31108603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scientific basis of the OCRA method for risk assessment of biomechanical overload of upper limb, as preferred method in ISO standards on biomechanical risk factors.
    Colombini D; Occhipinti E
    Scand J Work Environ Health; 2018 Jul; 44(4):436-438. PubMed ID: 29961081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer learning of chaotic systems.
    Guo Y; Zhang H; Wang L; Fan H; Xiao J; Wang X
    Chaos; 2021 Jan; 31(1):011104. PubMed ID: 33754764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational capabilities of random automata networks for reservoir computing.
    Snyder D; Goudarzi A; Teuscher C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042808. PubMed ID: 23679474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Power of Asynchronously Tuned Automata Enhancing the Unfolded Edge of Chaos.
    Gunji YP; Uragami D
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational capabilities of a multicellular reservoir computing system.
    Nikolić V; Echlin M; Aguilar B; Shmulevich I
    PLoS One; 2023; 18(4):e0282122. PubMed ID: 37023084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of chaotic systems through reservoir computing.
    Lin ZF; Liang YM; Zhao JL; Feng J; Kapitaniak T
    Chaos; 2023 Dec; 33(12):. PubMed ID: 38079650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends In Theoretical Physics. Vol. 1. P. J. Ellis and Y. C. Tang, Eds. Addison-Wesley, Redwood City, CA, 1990. xvi, 412 pp., illus. $49.50.
    L K
    Science; 1990 Nov; 250(4985):1284. PubMed ID: 17829217
    [No Abstract]   [Full Text] [Related]  

  • 16. Reservoir computing with a single time-delay autonomous Boolean node.
    Haynes ND; Soriano MC; Rosin DP; Fischer I; Gauthier DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):020801. PubMed ID: 25768448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximal Memory Capacity Near the Edge of Chaos in Balanced Cortical E-I Networks.
    Kanamaru T; Hensch TK; Aihara K
    Neural Comput; 2023 Jun; ():1-33. PubMed ID: 37432864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Early Universe. Edward W. Kolb and Michael S. Turner. Addison-Wesley, Redwood City, CA, 1990. xxii, 547 pp., illus. $48.50. Frontiers in Physics, 69.
    Press WH
    Science; 1990 Aug; 249(4970):808-9. PubMed ID: 17756792
    [No Abstract]   [Full Text] [Related]  

  • 19. Real-time computation at the edge of chaos in recurrent neural networks.
    Bertschinger N; Natschläger T
    Neural Comput; 2004 Jul; 16(7):1413-36. PubMed ID: 15165396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of dynamic behavior forecasting parameters in the process of transition rule induction of unidimensional cellular automata.
    Weinert WR; Lopes HS
    Biosystems; 2010 Jan; 99(1):6-16. PubMed ID: 19686802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.