These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33380058)

  • 1. Oscillation behavior driven by processing delay in diffusively coupled inactive systems: Cluster synchronization and multistability.
    Yao C; He Z; Zou W
    Chaos; 2020 Dec; 30(12):123137. PubMed ID: 33380058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consistency in experiments on multistable driven delay systems.
    Oliver N; Larger L; Fischer I
    Chaos; 2016 Oct; 26(10):103115. PubMed ID: 27802682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustering in delay-coupled smooth and relaxational chemical oscillators.
    Blaha K; Lehnert J; Keane A; Dahms T; Hövel P; Schöll E; Hudson JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062915. PubMed ID: 24483539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators.
    Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling.
    Duan L; Fan D; Lu Q
    Cogn Neurodyn; 2013 Aug; 7(4):341-9. PubMed ID: 24427210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks.
    Song Y; Makarov VA; Velarde MG
    Biol Cybern; 2009 Aug; 101(2):147-67. PubMed ID: 19629517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators.
    Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple models for quorum sensing: nonlinear dynamical analysis.
    Chiang WY; Li YX; Lai PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041921. PubMed ID: 22181189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization of intermittent behavior in ensembles of multistable dynamical systems.
    Sevilla-Escoboza R; Buldú JM; Pisarchik AN; Boccaletti S; Gutiérrez R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032902. PubMed ID: 25871167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial synchronization in diffusively time-delay coupled oscillator networks.
    Steur E; Oguchi T; van Leeuwen C; Nijmeijer H
    Chaos; 2012 Dec; 22(4):043144. PubMed ID: 23278079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling.
    Yao C; Zhan M; Shuai J; Ma J; Kurths J
    Chaos; 2017 Dec; 27(12):126702. PubMed ID: 29289042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quenching of oscillation by the limiting factor of diffusively coupled oscillators.
    Manoranjani M; Senthilkumar DV; Zou W; Chandrasekar VK
    Phys Rev E; 2022 Dec; 106(6-1):064204. PubMed ID: 36671171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states.
    Choe CU; Dahms T; Hövel P; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillation quenching in diffusively coupled dynamical networks with inertial effects.
    Zou W; Chen Y; Senthilkumar DV; Kurths J
    Chaos; 2022 Apr; 32(4):041102. PubMed ID: 35489855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blinking Networks of Memristor Oscillatory Circuits in the Flux-Charge Domain.
    Lanza V; Secco J; Corinto F
    Front Neurosci; 2021; 15():618607. PubMed ID: 33967676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration of rhythmicity in diffusively coupled dynamical networks.
    Zou W; Senthilkumar DV; Nagao R; Kiss IZ; Tang Y; Koseska A; Duan J; Kurths J
    Nat Commun; 2015 Jul; 6():7709. PubMed ID: 26173555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal Processing in Periodically Forced Gradient Frequency Neural Networks.
    Kim JC; Large EW
    Front Comput Neurosci; 2015; 9():152. PubMed ID: 26733858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator.
    Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J
    Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of bifurcation-delay of slow passage effect by delayed self-feedback.
    Premraj D; Suresh K; Banerjee T; Thamilmaran K
    Chaos; 2017 Jan; 27(1):013104. PubMed ID: 28147504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifurcation analysis of multistability of synchronous states in the system of two delay-coupled oscillators.
    Adilova AB; Balakin MI; Gerasimova SA; Ryskin NM
    Chaos; 2021 Nov; 31(11):113103. PubMed ID: 34881617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.