These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33380058)
21. Koopman analysis in oscillator synchronization. Hu J; Lan Y Phys Rev E; 2020 Dec; 102(6-1):062216. PubMed ID: 33466105 [TBL] [Abstract][Full Text] [Related]
22. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling. Zaheer MH; Rehan M; Mustafa G; Ashraf M ISA Trans; 2014 Nov; 53(6):1716-30. PubMed ID: 25440951 [TBL] [Abstract][Full Text] [Related]
23. Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase representation. Viriyopase A; Memmesheimer RM; Gielen S Phys Rev E; 2018 Aug; 98(2-1):022217. PubMed ID: 30253475 [TBL] [Abstract][Full Text] [Related]
24. How to obtain extreme multistability in coupled dynamical systems. Hens CR; Banerjee R; Feudel U; Dana SK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):035202. PubMed ID: 22587141 [TBL] [Abstract][Full Text] [Related]
25. Measuring the universal synchronization properties of driven oscillators across a Hopf instability. Romanelli M; Wang L; Brunel M; Vallet M Opt Express; 2014 Apr; 22(7):7364-73. PubMed ID: 24718112 [TBL] [Abstract][Full Text] [Related]
26. Distinct collective states due to trade-off between attractive and repulsive couplings. Sathiyadevi K; Chandrasekar VK; Senthilkumar DV; Lakshmanan M Phys Rev E; 2018 Mar; 97(3-1):032207. PubMed ID: 29776099 [TBL] [Abstract][Full Text] [Related]
27. Delayed feedback control of synchronization in weakly coupled oscillator networks. Novičenko V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022919. PubMed ID: 26382488 [TBL] [Abstract][Full Text] [Related]
28. Additional repulsion reduces the dynamical resilience in the damaged networks. Bera BK Chaos; 2020 Feb; 30(2):023132. PubMed ID: 32113231 [TBL] [Abstract][Full Text] [Related]
30. Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators. Gambuzza LV; Buscarino A; Chessari S; Fortuna L; Meucci R; Frasca M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032905. PubMed ID: 25314502 [TBL] [Abstract][Full Text] [Related]
31. Diverse routes to oscillation death in a coupled oscillator system. Suárez-Vargas JJ; González JA; Stefanovska A; McClintock PV Europhys Lett; 2009 Feb; 85(3):. PubMed ID: 20823952 [TBL] [Abstract][Full Text] [Related]
32. Critical behavior and synchronization of discrete stochastic phase-coupled oscillators. Wood K; Van den Broeck C; Kawai R; Lindenberg K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031113. PubMed ID: 17025600 [TBL] [Abstract][Full Text] [Related]
33. Restoring oscillatory behavior from amplitude death with anti-phase synchronization patterns in networks of electrochemical oscillations. Nagao R; Zou W; Kurths J; Kiss IZ Chaos; 2016 Sep; 26(9):094808. PubMed ID: 27781452 [TBL] [Abstract][Full Text] [Related]
34. The role of axonal delay in the synchronization of networks of coupled cortical oscillators. Crook SM; Ermentrout GB; Vanier MC; Bower JM J Comput Neurosci; 1997 Apr; 4(2):161-72. PubMed ID: 9154522 [TBL] [Abstract][Full Text] [Related]
35. Weakly nonlinear analysis on synchronization and oscillation quenching of coupled mechanical oscillators. Kato Y; Kori H Sci Rep; 2024 Jan; 14(1):1461. PubMed ID: 38233565 [TBL] [Abstract][Full Text] [Related]
36. Controlling cluster synchronization by adapting the topology. Lehnert J; Hövel P; Selivanov A; Fradkov A; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042914. PubMed ID: 25375574 [TBL] [Abstract][Full Text] [Related]
37. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Xie Y; Chen L; Kang YM; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061921. PubMed ID: 18643314 [TBL] [Abstract][Full Text] [Related]
38. Global cluster synchronization in nonlinearly coupled community networks with heterogeneous coupling delays. Tseng JP Neural Netw; 2017 Feb; 86():18-31. PubMed ID: 27856063 [TBL] [Abstract][Full Text] [Related]
39. Oscillating synchronization in delayed oscillators with time-varying time delay coupling: Experimental observation. Karmakar B; Biswas D; Banerjee T Chaos; 2020 Jun; 30(6):063149. PubMed ID: 32611093 [TBL] [Abstract][Full Text] [Related]
40. Stability and Hopf bifurcation analysis in a delayed three-node circuit involving interlinked positive and negative feedback loops. Wang G; Yang Z; Turcotte M Math Biosci; 2019 Apr; 310():50-64. PubMed ID: 30529599 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]