These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33380058)

  • 41. Dynamical inference: where phase synchronization and generalized synchronization meet.
    Stankovski T; McClintock PV; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062909. PubMed ID: 25019853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exact synchronization bound for coupled time-delay systems.
    Senthilkumar DV; Pesquera L; Banerjee S; Ortín S; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):044902. PubMed ID: 23679553
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bursting near Bautin bifurcation in a neural network with delay coupling.
    Song Z; Xu J
    Int J Neural Syst; 2009 Oct; 19(5):359-73. PubMed ID: 19885964
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cluster synchronization in networks of coupled nonidentical dynamical systems.
    Lu W; Liu B; Chen T
    Chaos; 2010 Mar; 20(1):013120. PubMed ID: 20370275
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh-Nagumo system.
    Song Y; Xu J
    IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1659-70. PubMed ID: 24808010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synchronization of chaotic networks with time-delayed couplings: an analytic study.
    Englert A; Heiligenthal S; Kinzel W; Kanter I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046222. PubMed ID: 21599285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aging transition and universal scaling in oscillator networks.
    Daido H; Nakanishi K
    Phys Rev Lett; 2004 Sep; 93(10):104101. PubMed ID: 15447406
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detecting coexisting oscillatory patterns in delay coupled Lur'e systems.
    Rogov K; Pogromsky A; Steur E; Michiels W; Nijmeijer H
    Chaos; 2021 Mar; 31(3):033114. PubMed ID: 33810706
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robust synchronization for 2-D discrete-time coupled dynamical networks.
    Liang J; Wang Z; Liu X; Louvieris P
    IEEE Trans Neural Netw Learn Syst; 2012 Jun; 23(6):942-53. PubMed ID: 24806765
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of processing delay on bifurcation delay in a network of slow-fast oscillators.
    Premraj D; Suresh K; Thamilmaran K
    Chaos; 2019 Dec; 29(12):123127. PubMed ID: 31893660
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synchronization of diffusively coupled oscillators near the homoclinic bifurcation.
    Postnov D; Han SK; Kook H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2799-807. PubMed ID: 11970085
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Clusters in nonsmooth oscillator networks.
    Nicks R; Chambon L; Coombes S
    Phys Rev E; 2018 Mar; 97(3-1):032213. PubMed ID: 29776158
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complete characterization of the stability of cluster synchronization in complex dynamical networks.
    Sorrentino F; Pecora LM; Hagerstrom AM; Murphy TE; Roy R
    Sci Adv; 2016 Apr; 2(4):e1501737. PubMed ID: 27152349
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bifurcation structure of two coupled FHN neurons with delay.
    Farajzadeh Tehrani N; Razvan M
    Math Biosci; 2015 Dec; 270(Pt A):41-56. PubMed ID: 26476143
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complete synchronization and generalized synchronization of one-way coupled time-delay systems.
    Zhan M; Wang X; Gong X; Wei GW; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036208. PubMed ID: 14524869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hopf bifurcation and multistability in a system of phase oscillators.
    Astakhov S; Fujiwara N; Gulay A; Tsukamoto N; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032908. PubMed ID: 24125326
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stability switches and multistability coexistence in a delay-coupled neural oscillators system.
    Song Z; Xu J
    J Theor Biol; 2012 Nov; 313():98-114. PubMed ID: 22921877
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On multistability near the boundary of generalized synchronization in unidirectionally coupled chaotic systems.
    Moskalenko OI; Koronovskii AA; Selskii AO; Evstifeev EV
    Chaos; 2021 Aug; 31(8):083106. PubMed ID: 34470237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neuronal oscillations: unavoidable and useful?
    Singer W
    Eur J Neurosci; 2018 Oct; 48(7):2389-2398. PubMed ID: 29247490
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling.
    Choe CU; Flunkert V; Hövel P; Benner H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046206. PubMed ID: 17500977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.