These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 33380087)

  • 1. Excited state diabatization on the cheap using DFT: Photoinduced electron and hole transfer.
    Mao Y; Montoya-Castillo A; Markland TE
    J Chem Phys; 2020 Dec; 153(24):244111. PubMed ID: 33380087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate and efficient DFT-based diabatization for hole and electron transfer using absolutely localized molecular orbitals.
    Mao Y; Montoya-Castillo A; Markland TE
    J Chem Phys; 2019 Oct; 151(16):164114. PubMed ID: 31675855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.
    Liu J; Zhang Y; Bao P; Yi Y
    J Chem Theory Comput; 2017 Feb; 13(2):843-851. PubMed ID: 28072522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Couplings for Photoinduced Charge Transfer and Excitation Energy Transfer Based on Fragment Particle-Hole Densities.
    Wang YC; Feng S; Liang W; Zhao Y
    J Phys Chem Lett; 2021 Jan; 12(3):1032-1039. PubMed ID: 33470827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic Couplings for Photoinduced Electron Transfer and Excitation Energy Transfer Computed Using Excited States of Noninteracting Molecules.
    Voityuk AA
    J Phys Chem A; 2017 Jul; 121(29):5414-5419. PubMed ID: 28678488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings.
    Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S
    Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Couplings for Singlet Fission Processes Based on the Fragment Particle-Hole Densities.
    Wang YC; Feng S; Kong Y; Huang X; Liang W; Zhao Y
    J Chem Theory Comput; 2023 Jul; 19(13):3900-3914. PubMed ID: 37296507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast scheme to calculate electronic couplings between P3HT polymer units using diabatic orbitals for charge transfer dynamics simulations.
    Yu T; Fabunmi F; Huang J; Sumpter BG; Jakowski J
    J Comput Chem; 2019 Jan; 40(2):532-542. PubMed ID: 30548654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target State Optimized Density Functional Theory for Electronic Excited and Diabatic States.
    Zhang J; Tang Z; Zhang X; Zhu H; Zhao R; Lu Y; Gao J
    J Chem Theory Comput; 2023 Mar; 19(6):1777-1789. PubMed ID: 36917687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.
    Xie Y; Jiang S; Zheng J; Lan Z
    J Phys Chem A; 2017 Dec; 121(50):9567-9578. PubMed ID: 29172500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical estimation of the rate of photoinduced charge transfer reactions in triphenylamine C60 donor-acceptor conjugate.
    Martínez JP; Solà M; Voityuk AA
    J Comput Chem; 2016 Jun; 37(15):1396-405. PubMed ID: 26992355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient analytical gradients of property-based diabatic states: Geometry optimizations for localized holes.
    Paz ASP; Glover WJ
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37212413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal diabatic states based on solvation parameters.
    Alguire E; Subotnik JE
    J Chem Phys; 2012 Nov; 137(19):194108. PubMed ID: 23181295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the effect of the nature of the bridge on oxidative or reductive photoinduced electron transfer in donor-bridge-acceptor systems.
    Arrigo A; Santoro A; Indelli MT; Natali M; Scandola F; Campagna S
    Phys Chem Chem Phys; 2014 Jan; 16(3):818-26. PubMed ID: 24287945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the excited state dynamics, photophysical properties, and the influence of donor substitution in a donor-[Formula: see text]-acceptor system.
    Louis H; Ifediora LP; Enudi OC; Unimuke TO; Asogwa FC; Moshood YL
    J Mol Model; 2021 Sep; 27(10):284. PubMed ID: 34515856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabatization for Time-Dependent Density Functional Theory: Exciton Transfers and Related Conical Intersections.
    Tamura H
    J Phys Chem A; 2016 Nov; 120(46):9341-9347. PubMed ID: 27801581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: an MS-CASPT2 study.
    Blancafort L; Voityuk AA
    J Chem Phys; 2014 Mar; 140(9):095102. PubMed ID: 24606381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabatization Schemes for Generating Charge-Localized Electron-Proton Vibronic States in Proton-Coupled Electron Transfer Systems.
    Sirjoosingh A; Hammes-Schiffer S
    J Chem Theory Comput; 2011 Sep; 7(9):2831-41. PubMed ID: 26605474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonadiabatic Exciton and Charge Separation Dynamics at Interfaces of Zinc Phthalocyanine and Fullerene: Orientation Does Matter.
    Liu XY; Li ZW; Fang WH; Cui G
    J Phys Chem A; 2020 Sep; 124(37):7388-7398. PubMed ID: 32853524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.
    Sirjoosingh A; Hammes-Schiffer S
    J Phys Chem A; 2011 Mar; 115(11):2367-77. PubMed ID: 21351757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.