These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33380258)

  • 1. Dominance and fitness costs of insect resistance to genetically modified
    Huang F
    GM Crops Food; 2021 Jan; 12(1):192-211. PubMed ID: 33380258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective dominance and redundant killing of single- and dual-gene resistant populations of Helicoverpa zea on pyramided Bt corn and cotton.
    Santiago-González JC; Kerns DL; Head GP; Yang F
    Pest Manag Sci; 2022 Oct; 78(10):4333-4339. PubMed ID: 35750998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cross-pollination among non-Bt and pyramided Bt corn expressing cry proteins in seed mixtures on resistance development of dual-gene resistant Helicoverpa zea.
    Yang F; Kennedy H; Santiago-González JC; Kerns DL
    Pest Manag Sci; 2022 Aug; 78(8):3260-3265. PubMed ID: 35474413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas: lessons and implications for Bt corn IRM in China.
    Huang F
    Insect Sci; 2021 Jun; 28(3):574-589. PubMed ID: 32478944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.
    Kumar S; Chandra A; Pandey KC
    J Environ Biol; 2008 Sep; 29(5):641-53. PubMed ID: 19295059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing fitness costs of the resistance of
    Garlet CG; Muraro DS; Godoy DN; Cossa GE; Hanich MR; Stacke RF; Bernardi O
    Bull Entomol Res; 2022 Oct; 112(5):575-583. PubMed ID: 35016737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadherin-based resistance to Bacillus thuringiensis cotton in hybrid strains of pink bollworm: fitness costs and incomplete resistance.
    Carrière Y; Ellers-Kirk C; Biggs RW; Nyboer ME; Unnithan GC; Dennehy TJ; Tabashnik BE
    J Econ Entomol; 2006 Dec; 99(6):1925-35. PubMed ID: 17195656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-resistance and redundant killing of Vip3Aa resistant populations of Helicoverpa zea on purified Bt proteins and pyramided Bt crops.
    Kennedy H; Kerns DL; Head GP; Yang F
    Pest Manag Sci; 2023 Dec; 79(12):5173-5179. PubMed ID: 37575031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance of Cabbage Loopers to Bacillus thuringiensis (Bt) Toxin Cry1F and to Dual-Bt Toxin WideStrike Cotton Plants.
    Kain W; Cotto-Rivera RO; Wang P
    Appl Environ Microbiol; 2022 Oct; 88(20):e0119422. PubMed ID: 36200769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative association between host plant suitability and the fitness cost of resistance to Bacillus thuringiensis (Bacillales: Bacillaceae).
    Carrière Y; Tabashnik BE
    J Econ Entomol; 2024 Jun; 117(3):1106-1112. PubMed ID: 38603568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The progress in insect cross-resistance among Bacillus thuringiensis toxins.
    Wei J; Zhang Y; An S
    Arch Insect Biochem Physiol; 2019 Nov; 102(3):e21547. PubMed ID: 30864250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Management of Insect Pests with Bt Crops in the United States.
    Gassmann AJ; Reisig DD
    Annu Rev Entomol; 2023 Jan; 68():31-49. PubMed ID: 36170641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitness costs of Cry1F resistance in two populations of fall armyworm, Spodoptera frugiperda (J.E. Smith), collected from Puerto Rico and Florida.
    Dangal V; Huang F
    J Invertebr Pathol; 2015 May; 127():81-6. PubMed ID: 25791021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative fitness of susceptible and Cry1A.105/Cry2Ab2-single-/dual-protein-resistant Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) on non-Bt diet and a diet containing a low concentration of two proteins.
    Lin S; Head G; Price P; Niu Y; Huang F
    Insect Sci; 2023 Apr; 30(2):398-410. PubMed ID: 35670378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of resistance to two-toxin pyramid transgenic crops.
    Ives AR; Glaum PR; Ziebarth NL; Andow DA
    Ecol Appl; 2011 Mar; 21(2):503-15. PubMed ID: 21563580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insect resistance to Bt crops: lessons from the first billion acres.
    Tabashnik BE; Brévault T; Carrière Y
    Nat Biotechnol; 2013 Jun; 31(6):510-21. PubMed ID: 23752438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of secondary pests on Bacillus thuringiensis (Bt) crops.
    Catarino R; Ceddia G; Areal FJ; Park J
    Plant Biotechnol J; 2015 Jun; 13(5):601-12. PubMed ID: 25832330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance of Spodoptera frugiperda to Cry1, Cry2, and Vip3Aa Proteins in Bt Corn and Cotton in the Americas: Implications for the Rest of the World.
    Yang F; Wang Z; Kerns DL
    J Econ Entomol; 2022 Dec; 115(6):1752-1760. PubMed ID: 36515105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global perspectives on field-evolved resistance to transgenic Bt crops: a special collection.
    Tabashnik BE; Carrière Y; Wu Y; Fabrick JA
    J Econ Entomol; 2023 Apr; 116(2):269-274. PubMed ID: 37018465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Bt-susceptible and -heterozygous dual-gene resistant genotypes of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in seed blends of non-Bt and pyramided Bt maize.
    Dimase M; Brown S; Head GP; Price PA; Walker W; Yu W; Huang F
    Insect Sci; 2021 Aug; 28(4):1147-1158. PubMed ID: 32662592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.