These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33380262)

  • 1. A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications.
    Hoseinpour V; Noori L; Mahmoodpour S; Shariatinia Z
    J Biomater Sci Polym Ed; 2021 May; 32(7):906-965. PubMed ID: 33380262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes.
    Cheng C; Sun S; Zhao C
    J Mater Chem B; 2014 Nov; 2(44):7649-7672. PubMed ID: 32261902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical surface modification of poly(arylsulfone) ultrafiltration membrane and covalent immobilization of enzyme.
    Song H; Wu GX; Liu K
    J Environ Sci (China); 2004; 16(3):392-6. PubMed ID: 15272710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancements in modification of membrane materials over membrane separation for biomedical applications-Review.
    Hariharan P; Sundarrajan S; Arthanareeswaran G; Seshan S; Das DB; Ismail AF
    Environ Res; 2022 Mar; 204(Pt B):112045. PubMed ID: 34536369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer.
    Yu DG; Lin WC; Yang MC
    Bioconjug Chem; 2007; 18(5):1521-9. PubMed ID: 17688319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications.
    Sun W; Liu W; Wu Z; Chen H
    Macromol Rapid Commun; 2020 Apr; 41(8):e1900430. PubMed ID: 32134540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review.
    Nazari S; Abdelrasoul A
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP.
    Huang H; Liu M; Xu D; Mao L; Huang Q; Deng F; Tian J; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110157. PubMed ID: 31753361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of PVDF porous membranes via poly(DOPA) coating and heparin immobilization.
    Zhu LP; Yu JZ; Xu YY; Xi ZY; Zhu BK
    Colloids Surf B Biointerfaces; 2009 Feb; 69(1):152-5. PubMed ID: 19117736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer zwitterionic modification of diverse substrates with durable anti-corrosion and anti-fouling properties.
    Li S; Huang P; Ye Z; Wang Y; Wang W; Kong D; Zhang J; Deng L; Dong A
    J Mater Chem B; 2019 Oct; 7(39):6024-6034. PubMed ID: 31545333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface characterization of polymers for medical devices.
    Werner C; Jacobasch HJ
    Int J Artif Organs; 1999 Mar; 22(3):160-76. PubMed ID: 10357245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review.
    García A; Rodríguez B; Giraldo H; Quintero Y; Quezada R; Hassan N; Estay H
    Membranes (Basel); 2021 Jan; 11(2):. PubMed ID: 33525631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy.
    Wei Z; Tian P; Liu X; Zhou B
    Colloids Surf B Biointerfaces; 2014 Sep; 121():451-60. PubMed ID: 25009102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.
    Kochkodan V; Johnson DJ; Hilal N
    Adv Colloid Interface Sci; 2014 Apr; 206():116-40. PubMed ID: 23777923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent development and prospects of surface modification and biomedical applications of MXenes.
    Huang H; Jiang R; Feng Y; Ouyang H; Zhou N; Zhang X; Wei Y
    Nanoscale; 2020 Jan; 12(3):1325-1338. PubMed ID: 31872839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heparin-mimicking multilayer coating on polymeric membrane via LbL assembly of cyclodextrin-based supramolecules.
    Deng J; Liu X; Ma L; Cheng C; Shi W; Nie C; Zhao C
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21603-14. PubMed ID: 25375347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics.
    Arica MY; Bayramoglu G; Arica B; Yalçin E; Ito K; Yagci Y
    Macromol Biosci; 2005 Oct; 5(10):983-92. PubMed ID: 16208632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of hemocompatibility on a cellulose dialysis membrane with a novel biomedical polymer having a phospholipid polar group.
    Ishihara K; Fukumoto K; Miyazaki H; Nakabayashi N
    Artif Organs; 1994 Aug; 18(8):559-64. PubMed ID: 7993191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin.
    Ma L; Qin H; Cheng C; Xia Y; He C; Nie C; Wang L; Zhao C
    J Mater Chem B; 2014 Jan; 2(4):363-375. PubMed ID: 32261381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core-shell silica nanoparticles.
    Zhu LJ; Zhu LP; Zhang PB; Zhu BK; Xu YY
    J Colloid Interface Sci; 2016 Apr; 468():110-119. PubMed ID: 26835581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.