These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 33380324)
21. Establishing a Link Between Prescription Drug Abuse and Illicit Online Pharmacies: Analysis of Twitter Data. Katsuki T; Mackey TK; Cuomo R J Med Internet Res; 2015 Dec; 17(12):e280. PubMed ID: 26677966 [TBL] [Abstract][Full Text] [Related]
22. Machine Learning and Natural Language Processing for Geolocation-Centric Monitoring and Characterization of Opioid-Related Social Media Chatter. Sarker A; Gonzalez-Hernandez G; Ruan Y; Perrone J JAMA Netw Open; 2019 Nov; 2(11):e1914672. PubMed ID: 31693125 [TBL] [Abstract][Full Text] [Related]
23. Transferability Based on Drug Structure Similarity in the Automatic Classification of Noncompliant Drug Use on Social Media: Natural Language Processing Approach. Nishiyama T; Yada S; Wakamiya S; Hori S; Aramaki E J Med Internet Res; 2023 May; 25():e44870. PubMed ID: 37133915 [TBL] [Abstract][Full Text] [Related]
24. Hate speech detection and racial bias mitigation in social media based on BERT model. Mozafari M; Farahbakhsh R; Crespi N PLoS One; 2020; 15(8):e0237861. PubMed ID: 32853205 [TBL] [Abstract][Full Text] [Related]
25. Investigating the impact of pre-processing techniques and pre-trained word embeddings in detecting Arabic health information on social media. Albalawi Y; Buckley J; Nikolov NS J Big Data; 2021; 8(1):95. PubMed ID: 34249602 [TBL] [Abstract][Full Text] [Related]
26. Detecting racism and xenophobia using deep learning models on Twitter data: CNN, LSTM and BERT. Benítez-Andrades JA; González-Jiménez Á; López-Brea Á; Aveleira-Mata J; Alija-Pérez JM; García-Ordás MT PeerJ Comput Sci; 2022; 8():e906. PubMed ID: 35494847 [TBL] [Abstract][Full Text] [Related]
27. Utilizing a multi-class classification approach to detect therapeutic and recreational misuse of opioids on Twitter. Fodeh SJ; Al-Garadi M; Elsankary O; Perrone J; Becker W; Sarker A Comput Biol Med; 2021 Feb; 129():104132. PubMed ID: 33290931 [TBL] [Abstract][Full Text] [Related]
28. Solution to Detect, Classify, and Report Illicit Online Marketing and Sales of Controlled Substances via Twitter: Using Machine Learning and Web Forensics to Combat Digital Opioid Access. Mackey T; Kalyanam J; Klugman J; Kuzmenko E; Gupta R J Med Internet Res; 2018 Apr; 20(4):e10029. PubMed ID: 29613851 [TBL] [Abstract][Full Text] [Related]
29. A stacked convolutional neural network for detecting the resource tweets during a disaster. Madichetty S; M S Multimed Tools Appl; 2021; 80(3):3927-3949. PubMed ID: 32994750 [TBL] [Abstract][Full Text] [Related]
30. Discovering Cohorts of Pregnant Women From Social Media for Safety Surveillance and Analysis. Sarker A; Chandrashekar P; Magge A; Cai H; Klein A; Gonzalez G J Med Internet Res; 2017 Oct; 19(10):e361. PubMed ID: 29084707 [TBL] [Abstract][Full Text] [Related]
31. A deep learning approach for identifying cancer survivors living with post-traumatic stress disorder on Twitter. Ismail NH; Liu N; Du M; He Z; Hu X BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 4):254. PubMed ID: 33317508 [TBL] [Abstract][Full Text] [Related]
32. Epidemiology from Tweets: Estimating Misuse of Prescription Opioids in the USA from Social Media. Chary M; Genes N; Giraud-Carrier C; Hanson C; Nelson LS; Manini AF J Med Toxicol; 2017 Dec; 13(4):278-286. PubMed ID: 28831738 [TBL] [Abstract][Full Text] [Related]
33. "You got to love rosin: Solventless dabs, pure, clean, natural medicine." Exploring Twitter data on emerging trends in Rosin Tech marijuana concentrates. Lamy FR; Daniulaityte R; Zatreh M; Nahhas RW; Sheth A; Martins SS; Boyer EW; Carlson RG Drug Alcohol Depend; 2018 Feb; 183():248-252. PubMed ID: 29306816 [TBL] [Abstract][Full Text] [Related]
35. Identifying HIV-related digital social influencers using an iterative deep learning approach. Zheng C; Wang W; Young SD AIDS; 2021 May; 35(Suppl 1):S85-S89. PubMed ID: 33867491 [TBL] [Abstract][Full Text] [Related]
36. Machine Learning to Detect Self-Reporting of Symptoms, Testing Access, and Recovery Associated With COVID-19 on Twitter: Retrospective Big Data Infoveillance Study. Mackey T; Purushothaman V; Li J; Shah N; Nali M; Bardier C; Liang B; Cai M; Cuomo R JMIR Public Health Surveill; 2020 Jun; 6(2):e19509. PubMed ID: 32490846 [TBL] [Abstract][Full Text] [Related]
37. Associations Between Exposure to and Expression of Negative Opinions About Human Papillomavirus Vaccines on Social Media: An Observational Study. Dunn AG; Leask J; Zhou X; Mandl KD; Coiera E J Med Internet Res; 2015 Jun; 17(6):e144. PubMed ID: 26063290 [TBL] [Abstract][Full Text] [Related]
38. Depression Detection Based on Hybrid Deep Learning SSCL Framework Using Self-Attention Mechanism: An Application to Social Networking Data. Nadeem A; Naveed M; Islam Satti M; Afzal H; Ahmad T; Kim KI Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560144 [TBL] [Abstract][Full Text] [Related]
39. How Do You #relax When You're #stressed? A Content Analysis and Infodemiology Study of Stress-Related Tweets. Doan S; Ritchart A; Perry N; Chaparro JD; Conway M JMIR Public Health Surveill; 2017 Jun; 3(2):e35. PubMed ID: 28611016 [TBL] [Abstract][Full Text] [Related]
40. Artificial Intelligence-Based Models for Predicting Vaccines Critical Tweets: An Experimental Study. Shah U; Ali H; Alam T; Househ M; Shah Z Stud Health Technol Inform; 2022 Jun; 295():209-212. PubMed ID: 35773845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]