BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33380331)

  • 1. Natural language processing (NLP) tools in extracting biomedical concepts from research articles: a case study on autism spectrum disorder.
    Peng J; Zhao M; Havrilla J; Liu C; Weng C; Guthrie W; Schultz R; Wang K; Zhou Y
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):322. PubMed ID: 33380331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetaMap Lite: an evaluation of a new Java implementation of MetaMap.
    Demner-Fushman D; Rogers WJ; Aronson AR
    J Am Med Inform Assoc; 2017 Jul; 24(4):841-844. PubMed ID: 28130331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of MetaMap and cTAKES for entity extraction in clinical notes.
    Reátegui R; Ratté S
    BMC Med Inform Decis Mak; 2018 Sep; 18(Suppl 3):74. PubMed ID: 30255810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology.
    Ly T; Pamer C; Dang O; Brajovic S; Haider S; Botsis T; Milward D; Winter A; Lu S; Ball R
    J Biomed Inform; 2018 Jul; 83():73-86. PubMed ID: 29860093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of silver standard concept annotations from biomedical texts with special relevance to phenotypes.
    Oellrich A; Collier N; Smedley D; Groza T
    PLoS One; 2015; 10(1):e0116040. PubMed ID: 25607983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Extraction of Diagnostic Criteria From Electronic Health Records for Autism Spectrum Disorders: Development, Evaluation, and Application.
    Leroy G; Gu Y; Pettygrove S; Galindo MK; Arora A; Kurzius-Spencer M
    J Med Internet Res; 2018 Nov; 20(11):e10497. PubMed ID: 30404767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatically Detecting Failures in Natural Language Processing Tools for Online Community Text.
    Park A; Hartzler AL; Huh J; McDonald DW; Pratt W
    J Med Internet Res; 2015 Aug; 17(8):e212. PubMed ID: 26323337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated SNOMED CT concept and attribute relationship detection through a web-based implementation of cTAKES.
    Kersloot MG; Lau F; Abu-Hanna A; Arts DL; Cornet R
    J Biomed Semantics; 2019 Sep; 10(1):14. PubMed ID: 31533810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of "off-the-shelf" information extraction algorithms in clinical informatics: A feasibility study of MetaMap annotation of Italian medical notes.
    Chiaramello E; Pinciroli F; Bonalumi A; Caroli A; Tognola G
    J Biomed Inform; 2016 Oct; 63():22-32. PubMed ID: 27444186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Ontology-Enabled Natural Language Processing Pipeline for Provenance Metadata Extraction from Biomedical Text (Short Paper).
    Valdez J; Rueschman M; Kim M; Redline S; Sahoo SS
    On Move Meaningful Internet Syst; 2016 Oct; 10033():699-708. PubMed ID: 28664200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a phenotype ontology for autism spectrum disorder by natural language processing on electronic health records.
    Zhao M; Havrilla J; Peng J; Drye M; Fecher M; Guthrie W; Tunc B; Schultz R; Wang K; Zhou Y
    J Neurodev Disord; 2022 May; 14(1):32. PubMed ID: 35606697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using rule-based natural language processing to improve disease normalization in biomedical text.
    Kang N; Singh B; Afzal Z; van Mulligen EM; Kors JA
    J Am Med Inform Assoc; 2013; 20(5):876-81. PubMed ID: 23043124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RysannMD: A biomedical semantic annotator balancing speed and accuracy.
    Cuzzola J; Jovanović J; Bagheri E
    J Biomed Inform; 2017 Jul; 71():91-109. PubMed ID: 28552401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NOBLE - Flexible concept recognition for large-scale biomedical natural language processing.
    Tseytlin E; Mitchell K; Legowski E; Corrigan J; Chavan G; Jacobson RS
    BMC Bioinformatics; 2016 Jan; 17():32. PubMed ID: 26763894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CLAMP - a toolkit for efficiently building customized clinical natural language processing pipelines.
    Soysal E; Wang J; Jiang M; Wu Y; Pakhomov S; Liu H; Xu H
    J Am Med Inform Assoc; 2018 Mar; 25(3):331-336. PubMed ID: 29186491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting cancer concepts from clinical notes using natural language processing: a systematic review.
    Gholipour M; Khajouei R; Amiri P; Hajesmaeel Gohari S; Ahmadian L
    BMC Bioinformatics; 2023 Oct; 24(1):405. PubMed ID: 37898795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sophia: A Expedient UMLS Concept Extraction Annotator.
    Divita G; Zeng QT; Gundlapalli AV; Duvall S; Nebeker J; Samore MH
    AMIA Annu Symp Proc; 2014; 2014():467-76. PubMed ID: 25954351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD).
    Wu Y; Denny JC; Trent Rosenbloom S; Miller RA; Giuse DA; Wang L; Blanquicett C; Soysal E; Xu J; Xu H
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e79-e86. PubMed ID: 27539197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.