These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 33380739)

  • 1. Fluid dynamics of COVID-19 airborne infection suggests urgent data for a scientific design of social distancing.
    Rosti ME; Olivieri S; Cavaiola M; Seminara A; Mazzino A
    Sci Rep; 2020 Dec; 10(1):22426. PubMed ID: 33380739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airborne dispersion of droplets during coughing: a physical model of viral transmission.
    Li H; Leong FY; Xu G; Kang CW; Lim KH; Tan BH; Loo CM
    Sci Rep; 2021 Feb; 11(1):4617. PubMed ID: 33633316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking.
    Wang Y; Xu G; Huang YW
    PLoS One; 2020; 15(10):e0241539. PubMed ID: 33125421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of viral bioaerosols indoors.
    Kudryashova OB; Muravlev EV; Antonnikova AA; Titov SS
    PLoS One; 2021; 16(1):e0244983. PubMed ID: 33400714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study.
    Feng Y; Marchal T; Sperry T; Yi H
    J Aerosol Sci; 2020 Sep; 147():105585. PubMed ID: 32427227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deposition distribution of the new coronavirus (SARS-CoV-2) in the human airways upon exposure to cough-generated droplets and aerosol particles.
    Madas BG; Füri P; Farkas Á; Nagy A; Czitrovszky A; Balásházy I; Schay GG; Horváth A
    Sci Rep; 2020 Dec; 10(1):22430. PubMed ID: 33384436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airborne transmission of SARS-CoV-2 is the dominant route of transmission: droplets and aerosols.
    Rabaan AA; Al-Ahmed SH; Al-Malkey M; Alsubki R; Ezzikouri S; Al-Hababi FH; Sah R; Al Mutair A; Alhumaid S; Al-Tawfiq JA; Al-Omari A; Al-Qaaneh AM; Al-Qahtani M; Tirupathi R; Al Hamad MA; Al-Baghli NA; Sulaiman T; Alsubait A; Mehta R; Abass E; Alawi M; Alshahrani F; Shrestha DB; Karobari MI; Pecho-Silva S; Arteaga-Livias K; Bonilla-Aldana DK; Rodriguez-Morales AJ
    Infez Med; 2021 Mar; 29(1):10-19. PubMed ID: 33664169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of indoor aerosol generation, transport, and control in the context of COVID-19.
    Kohanski MA; Lo LJ; Waring MS
    Int Forum Allergy Rhinol; 2020 Oct; 10(10):1173-1179. PubMed ID: 32652898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerosol Transmission of SARS-CoV-2: Physical Principles and Implications.
    Jarvis MC
    Front Public Health; 2020; 8():590041. PubMed ID: 33330334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the evaporation characteristics of saliva droplets and aerosols: Levitation experiments and numerical modeling.
    Lieber C; Melekidis S; Koch R; Bauer HJ
    J Aerosol Sci; 2021 May; 154():105760. PubMed ID: 33518792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airflows inside passenger cars and implications for airborne disease transmission.
    Mathai V; Das A; Bailey JA; Breuer K
    Sci Adv; 2021 Jan; 7(1):. PubMed ID: 33277325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airborne transmission of respiratory viruses.
    Wang CC; Prather KA; Sznitman J; Jimenez JL; Lakdawala SS; Tufekci Z; Marr LC
    Science; 2021 Aug; 373(6558):. PubMed ID: 34446582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peering inside a cough or sneeze to explain enhanced airborne transmission under dry weather.
    Liu K; Allahyari M; Salinas JS; Zgheib N; Balachandar S
    Sci Rep; 2021 May; 11(1):9826. PubMed ID: 33972590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How far droplets can move in indoor environments--revisiting the Wells evaporation-falling curve.
    Xie X; Li Y; Chwang AT; Ho PL; Seto WH
    Indoor Air; 2007 Jun; 17(3):211-25. PubMed ID: 17542834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology to Disease Transmission of Respiratory Tract Infection: A Narrative Review.
    Singh NK; Kumar N; Singh AK
    Infect Disord Drug Targets; 2021; 21(6):e170721188930. PubMed ID: 33297921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A guideline to limit indoor airborne transmission of COVID-19.
    Bazant MZ; Bush JWM
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33858987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of saliva fluid properties on pathogen transmissibility.
    Reyes J; Fontes D; Bazzi A; Otero M; Ahmed K; Kinzel M
    Sci Rep; 2021 Aug; 11(1):16051. PubMed ID: 34362974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended Lifetime of Respiratory Droplets in a Turbulent Vapor Puff and Its Implications on Airborne Disease Transmission.
    Chong KL; Ng CS; Hori N; Yang R; Verzicco R; Lohse D
    Phys Rev Lett; 2021 Jan; 126(3):034502. PubMed ID: 33543958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size distribution of virus laden droplets from expiratory ejecta of infected subjects.
    Anand S; Mayya YS
    Sci Rep; 2020 Dec; 10(1):21174. PubMed ID: 33273648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical assessment of social distancing of preventing airborne transmission of COVID-19 during different breathing and coughing processes.
    Issakhov A; Zhandaulet Y; Omarova P; Alimbek A; Borsikbayeva A; Mustafayeva A
    Sci Rep; 2021 May; 11(1):9412. PubMed ID: 33941805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.