BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33380775)

  • 1. Review on fat replacement using protein-based microparticulated powders or microgels: A textural perspective.
    Kew B; Holmes M; Stieger M; Sarkar A
    Trends Food Sci Technol; 2020 Dec; 106():457-468. PubMed ID: 33380775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Fat Replacers on the Rheological, Tribological, and Aroma Release Properties of Reduced-Fat Emulsions.
    Schädle CN; Sanahuja S; Bader-Mittermaier S
    Foods; 2022 Mar; 11(6):. PubMed ID: 35327243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of homogenisation in formation of thermally induced aggregates in a non- and low- fat milk model system with microparticulated whey proteins.
    Torres IC; Nieto G; Nylander T; Simonsen AC; Tolkach A; Ipsen R
    J Dairy Res; 2017 May; 84(2):229-238. PubMed ID: 28524017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the lubrication behavior of whey protein model foods using tribology in linear and elliptical movement.
    Campbell CL; Foegeding EA; van de Velde F
    J Texture Stud; 2017 Aug; 48(4):335-341. PubMed ID: 28556911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced calorie emulsion-based foods: Protein microparticles and dietary fiber as fat replacers.
    Chung C; Degner B; McClements DJ
    Food Res Int; 2014 Oct; 64():664-676. PubMed ID: 30011702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Milk Fat Substitution by Microparticulated Protein in Reduced-fat Cheese Emulsion: The Effects on Stability, Microstructure, Rheological and Sensory Properties.
    Urgu M; Türk A; Ünlütürk S; Kaymak-Ertekin F; Koca N
    Food Sci Anim Resour; 2019 Feb; 39(1):23-34. PubMed ID: 30882071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise.
    Sun C; Liu R; Liang B; Wu T; Sui W; Zhang M
    Food Res Int; 2018 Jun; 108():151-160. PubMed ID: 29735044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical, technological, instrumental, microstructural, oxidative and sensory properties of emulsified sausages formulated with microparticulated whey protein to substitute animal fat.
    Ozturk-Kerimoglu B; Urgu-Ozturk M; Serdaroglu M; Koca N
    Meat Sci; 2022 Feb; 184():108672. PubMed ID: 34655998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Texture and lubrication properties of functional cream cheese: Effect of β-glucan and phytosterol.
    Ningtyas DW; Bhandari B; Bansal N; Prakash S
    J Texture Stud; 2018 Feb; 49(1):11-22. PubMed ID: 28594435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-Based Fat Replacers: A Focus on Fabrication Methods and Fat-Mimic Mechanisms.
    Nourmohammadi N; Austin L; Chen D
    Foods; 2023 Feb; 12(5):. PubMed ID: 36900473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combined effects of different fat replacers and rennet casein on the properties of reduced-fat processed cheese.
    Schädle CN; Eisner P; Bader-Mittermaier S
    J Dairy Sci; 2020 May; 103(5):3980-3993. PubMed ID: 32147262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Reduced-Fat Mayonnaise and Comparison of Sensory Perception, Rheological, Tribological, and Textural Analyses.
    Schädle CN; Bader-Mittermaier S; Sanahuja S
    Foods; 2022 Mar; 11(6):. PubMed ID: 35327229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Corn Dextrin on the Rheological, Tribological, and Aroma Release Properties of a Reduced-Fat Model of Processed Cheese Spread.
    Schädle CN; Bader-Mittermaier S; Sanahuja S
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of anthocyanin-absorbed whey protein microgels on physicochemical and textural properties of reduced-fat Cheddar cheese.
    Wen P; Zhu Y; Luo J; Wang P; Liu B; Du Y; Jiao Y; Hu Y; Chen C; Ren F; Alejandro CU; Li Y
    J Dairy Sci; 2021 Jan; 104(1):228-242. PubMed ID: 33189294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent trends in design of healthier fat replacers: Type, replacement mechanism, sensory evaluation method and consumer acceptance.
    Gao Y; Zhao Y; Yao Y; Chen S; Xu L; Wu N; Tu Y
    Food Chem; 2024 Jul; 447():138982. PubMed ID: 38489876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming sustainable plant proteins into high performance lubricating microgels.
    Kew B; Holmes M; Liamas E; Ettelaie R; Connell SD; Dini D; Sarkar A
    Nat Commun; 2023 Aug; 14(1):4743. PubMed ID: 37550321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrates as Fat Replacers.
    Peng X; Yao Y
    Annu Rev Food Sci Technol; 2017 Feb; 8():331-351. PubMed ID: 28245156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview on the types, applications and health implications of fat replacers.
    Syan V; Kaur J; Sharma K; Patni M; Rasane P; Singh J; Bhadariya V
    J Food Sci Technol; 2024 Jan; 61(1):27-38. PubMed ID: 38192702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Isfarzeh seed (Plantago ovate L.) mucilage as a fat mimetic in mayonnaise.
    Amiri Aghdaei SS; Aalami M; Babaei Geefan S; Ranjbar A
    J Food Sci Technol; 2014 Oct; 51(10):2748-54. PubMed ID: 25328221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of starch-based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases.
    Chen Y; She Y; Zhang R; Wang J; Zhang X; Gou X
    Food Sci Nutr; 2020 Jan; 8(1):16-22. PubMed ID: 31993128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.