These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 3338081)
1. Biological significance of domain-oriented DNA repair in xeroderma pigmentosum cells. Kantor GJ; Elking CF Cancer Res; 1988 Feb; 48(4):844-9. PubMed ID: 3338081 [TBL] [Abstract][Full Text] [Related]
2. Defective postreplication repair in xeroderma pigmentosum variant fibroblasts. Boyer JC; Kaufmann WK; Brylawski BP; Cordeiro-Stone M Cancer Res; 1990 May; 50(9):2593-8. PubMed ID: 2109654 [TBL] [Abstract][Full Text] [Related]
3. Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts. Roza L; Vermeulen W; Bergen Henegouwen JB; Eker AP; Jaspers NG; Lohman PH; Hoeijmakers JH Cancer Res; 1990 Mar; 50(6):1905-10. PubMed ID: 2306742 [TBL] [Abstract][Full Text] [Related]
4. Modulation of transcriptional activity of p53 by ultraviolet radiation: linkage between p53 pathway and DNA repair through damage recognition. Zhu Q; Wani MA; El-Mahdy M; Wani G; Wani AA Mol Carcinog; 2000 Aug; 28(4):215-24. PubMed ID: 10972991 [TBL] [Abstract][Full Text] [Related]
5. Roles of poly(ADP-ribose) synthesis in repair and replication in normal human, Cockayne syndrome, and xeroderma pigmentosum fibroblasts after UV irradiation. Fujiwara Y; Goto K; Yamamoto K; Ichihashi M Princess Takamatsu Symp; 1983; 13():209-18. PubMed ID: 6418714 [TBL] [Abstract][Full Text] [Related]
6. A lack of radiation-induced ornithine decarboxylase activity prevents enhanced reactivation of herpes simplex virus and is linked to non-cancer proneness in xeroderma pigmentosum patients. Terleth C; van Laar T; Schouten R; van Steeg H; Hodemaekers H; Wormhoudt T; Cornelissen-Steijger PD; Abrahams PJ; van der Eb AJ Cancer Res; 1997 Oct; 57(19):4384-92. PubMed ID: 9331102 [TBL] [Abstract][Full Text] [Related]
7. Detection of DNA single-strand breaks during the repair of UV damage in xeroderma pigmentosum cells. Fornace AJ; Seres DS Radiat Res; 1983 Jan; 93(1):107-11. PubMed ID: 6823503 [TBL] [Abstract][Full Text] [Related]
8. Role of postreplication repair in transformation of human fibroblasts to anchorage independence. Boyer JC; Kaufmann WK; Cordeiro-Stone M Cancer Res; 1991 Jun; 51(11):2960-4. PubMed ID: 1903328 [TBL] [Abstract][Full Text] [Related]
9. Detection of nucleotide excision repair incisions in human fibroblasts by immunostaining for PCNA. Aboussekhra A; Wood RD Exp Cell Res; 1995 Dec; 221(2):326-32. PubMed ID: 7493631 [TBL] [Abstract][Full Text] [Related]
10. Sodium butyrate stimulates cellular recovery from UV damage in xeroderma pigmentosum cells belonging to complementation group F. Nishigori C; Takebe H Jpn J Cancer Res; 1987 Sep; 78(9):932-6. PubMed ID: 3117749 [TBL] [Abstract][Full Text] [Related]
11. Different sensitivities to ultraviolet light-induced cytotoxicity and sister chromatid exchanges in xeroderma pigmentosum and Bloom's syndrome fibroblasts. Mamada A; Kondo S; Satoh Y Photodermatol; 1989 Jun; 6(3):124-30. PubMed ID: 2762203 [TBL] [Abstract][Full Text] [Related]
12. Repair of psoralen-induced cross-links and monoadducts in normal and repair-deficient human fibroblasts. Gruenert DC; Cleaver JE Cancer Res; 1985 Nov; 45(11 Pt 1):5399-404. PubMed ID: 4053014 [TBL] [Abstract][Full Text] [Related]
13. Xeroderma pigmentosum complementation group E: a case report. Kawada A; Satoh Y; Fujiwara Y Photodermatol; 1986 Aug; 3(4):233-8. PubMed ID: 3774595 [TBL] [Abstract][Full Text] [Related]
14. A further definition of characteristics of DNA-excision repair in xeroderma pigmentosum complementation group A strains. Kantor GJ; Player AN Mutat Res; 1986 Jul; 166(1):79-88. PubMed ID: 3724780 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of nucleotide excision repair defects between XPD-mutated fibroblasts derived from trichothiodystrophy and xeroderma pigmentosum patients. Nishiwaki T; Kobayashi N; Iwamoto T; Yamamoto A; Sugiura S; Liu YC; Sarasin A; Okahashi Y; Hirano M; Ueno S; Mori T DNA Repair (Amst); 2008 Dec; 7(12):1990-8. PubMed ID: 18817897 [TBL] [Abstract][Full Text] [Related]
16. Repair of ultraviolet light damage in a variety of human fibroblast cell strains. Lehmann AR; Kirk-Bell S; Arlett CF; Harcourt SA; de Weerd-Kastelein EA; Keijzer W; Hall-Smith P Cancer Res; 1977 Mar; 37(3):904-10. PubMed ID: 837385 [TBL] [Abstract][Full Text] [Related]
17. Repair of gamma-ray-induced DNA base damage in xeroderma pigmentosum cells. Fornace AJ; Dobson PP; Kinsella TJ Radiat Res; 1986 Apr; 106(1):73-7. PubMed ID: 3961106 [TBL] [Abstract][Full Text] [Related]
18. Differential behaviors toward ultraviolet A and B radiation of fibroblasts and keratinocytes from normal and DNA-repair-deficient patients. Otto AI; Riou L; Marionnet C; Mori T; Sarasin A; Magnaldo T Cancer Res; 1999 Mar; 59(6):1212-8. PubMed ID: 10096550 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of UV-induced mutation spectra in human XP-D/ERCC2 gene-mutated xeroderma pigmentosum and trichothiodystrophy cells. Marionnet C; Benoit A; Benhamou S; Sarasin A; Stary A J Mol Biol; 1995 Oct; 252(5):550-62. PubMed ID: 7563073 [TBL] [Abstract][Full Text] [Related]
20. Abnormal response of xeroderma pigmentosum cells to bleomycin. Hurt MM; Moses RE Cancer Res; 1984 Oct; 44(10):4396-402. PubMed ID: 6205748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]