These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33381051)

  • 1. Composite Backward Differentiation Formula for the Bidomain Equations.
    Gao X; Henriquez CS; Ying W
    Front Physiol; 2020; 11():591159. PubMed ID: 33381051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient fully implicit time integration methods for modeling cardiac dynamics.
    Ying W; Rose DJ; Henriquez CS
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2701-11. PubMed ID: 19126449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical method for the solution of the bidomain equations in cardiac tissue.
    Keener JP; Bogar K
    Chaos; 1998 Mar; 8(1):234-241. PubMed ID: 12779724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.
    Asgharzadeh H; Borazjani I
    J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel multigrid preconditioner for the cardiac bidomain model.
    Weber dos Santos R; Plank G; Bauer S; Vigmond EJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1960-8. PubMed ID: 15536898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics.
    Dumbser M; Balsara DS; Tavelli M; Fambri F
    Int J Numer Methods Fluids; 2019 Jan; 89(1-2):16-42. PubMed ID: 31293284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology driven adaptivity for the numerical solution of the bidomain equations.
    Whiteley JP
    Ann Biomed Eng; 2007 Sep; 35(9):1510-20. PubMed ID: 17541825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the coupled system improves computational efficiency of the bidomain equations.
    Southern JA; Plank G; Vigmond EJ; Whiteley JP
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2404-12. PubMed ID: 19457741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of multilevel solvers for the cardiac bidomain equations.
    Austin T; Trew M; Pullan A
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7204-7. PubMed ID: 17281940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2005 Apr; 194(2):233-48. PubMed ID: 15854678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fully implicit finite element method for bidomain models of cardiac electrophysiology.
    Dal H; Göktepe S; Kaliske M; Kuhl E
    Comput Methods Biomech Biomed Engin; 2012; 15(6):645-56. PubMed ID: 21491253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability analysis of the POD reduced order method for solving the bidomain model in cardiac electrophysiology.
    Corrado C; Lassoued J; Mahjoub M; Zemzemi N
    Math Biosci; 2016 Feb; 272():81-91. PubMed ID: 26723278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operator Splitting Implicit Integration Factor Methods for Stiff Reaction-Diffusion-Advection Systems.
    Zhao S; Ovadia J; Liu X; Zhang YT; Nie Q
    J Comput Phys; 2011 Jul; 230(15):5996-6009. PubMed ID: 21666863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GEMS: A Fully Integrated PETSc-Based Solver for Coupled Cardiac Electromechanics and Bidomain Simulations.
    Arens S; Dierckx H; Panfilov AV
    Front Physiol; 2018; 9():1431. PubMed ID: 30386252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual adaptive explicit time integration algorithm for efficiently solving the cardiac monodomain equation.
    Mountris KA; Pueyo E
    Int J Numer Method Biomed Eng; 2021 Jul; 37(7):e3461. PubMed ID: 33780171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully implicit finite element method for bidomain models of cardiac electromechanics.
    Dal H; Göktepe S; Kaliske M; Kuhl E
    Comput Methods Appl Mech Eng; 2013 Jan; 253():323-336. PubMed ID: 23175588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent Time-Scale Operator-Splitting Integration for Chemical Reaction Systems.
    Zhang Y; Du W
    IEEE Trans Neural Netw Learn Syst; 2021 Aug; 32(8):3366-3376. PubMed ID: 32678793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forward Euler stability of the bidomain model of cardiac tissue.
    Puwal S; Roth BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):951-3. PubMed ID: 17518295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.