BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33381252)

  • 1. Manipulation of single cells inside nanoliter water droplets using acoustic forces.
    Gerlt MS; Haidas D; Ratschat A; Suter P; Dittrich PS; Dual J
    Biomicrofluidics; 2020 Nov; 14(6):064112. PubMed ID: 33381252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Sampling of Nanoliter Droplet Arrays for Noninvasive Protein Analysis in Discrete Yeast Cultivations by MALDI-MS.
    Haidas D; Napiorkowska M; Schmitt S; Dittrich PS
    Anal Chem; 2020 Mar; 92(5):3810-3818. PubMed ID: 31990188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets.
    Küster SK; Fagerer SR; Verboket PE; Eyer K; Jefimovs K; Zenobi R; Dittrich PS
    Anal Chem; 2013 Feb; 85(3):1285-9. PubMed ID: 23289755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intra-droplet particle switch for droplet microfluidics using bulk acoustic waves.
    Fornell A; Ohlin M; Garofalo F; Nilsson J; Tenje M
    Biomicrofluidics; 2017 May; 11(3):031101. PubMed ID: 28580044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration and binary separation of micro particles for droplet-based digital microfluidics.
    Cho SK; Zhao Y; Kim CJ
    Lab Chip; 2007 Apr; 7(4):490-8. PubMed ID: 17389966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible online in-droplet cell/synthetic particle concentration utilizing alternating current electrothermal-flow field-effect transistor.
    Sun H; Ren Y; Tao Y; Jiang T; Jiang H
    Lab Chip; 2021 May; 21(10):1987-1997. PubMed ID: 34008589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces.
    Wu Y; Chattaraj R; Ren Y; Jiang H; Lee D
    Anal Chem; 2021 Jun; 93(21):7635-7646. PubMed ID: 34014074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Platform for Multimodal Analysis of Enzyme Secretion in Nanoliter Droplet Arrays.
    Haidas D; Bachler S; Köhler M; Blank LM; Zenobi R; Dittrich PS
    Anal Chem; 2019 Feb; 91(3):2066-2073. PubMed ID: 30571917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass Activated Droplet Sorting (MADS) Enables High-Throughput Screening of Enzymatic Reactions at Nanoliter Scale.
    Holland-Moritz DA; Wismer MK; Mann BF; Farasat I; Devine P; Guetschow ED; Mangion I; Welch CJ; Moore JC; Sun S; Kennedy RT
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4470-4477. PubMed ID: 31868984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic Microtweezers for High-Throughput Bioseparation in Sub-Nanoliter Droplets.
    Dumas S; Alexandre L; Richerd M; Serra M; Descroix S
    Methods Mol Biol; 2024; 2804():163-176. PubMed ID: 38753147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ANDeS: An automated nanoliter droplet selection and collection device.
    Gómez JEU; Faraj REKE; Braun M; Levkin PA; Popova AA
    SLAS Technol; 2024 Feb; 29(1):100118. PubMed ID: 37981010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.
    Beneyton T; Thomas S; Griffiths AD; Nicaud JM; Drevelle A; Rossignol T
    Microb Cell Fact; 2017 Jan; 16(1):18. PubMed ID: 28143479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection.
    Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT
    Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
    Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A
    Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput sorting of nanoliter droplets enabled by a sequentially addressable dielectrophoretic array.
    Loo MH; Nakagawa Y; Kim SH; Isozaki A; Goda K
    Electrophoresis; 2022 Feb; 43(3):477-486. PubMed ID: 34599837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations.
    Postek W; Garstecki P
    Acc Chem Res; 2022 Mar; 55(5):605-615. PubMed ID: 35119826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free single-cell analysis in microdroplets using a light-scattering-based optofluidic chip.
    Liang L; Liang M; Zuo Z; Ai Y
    Biosens Bioelectron; 2024 Jun; 253():116148. PubMed ID: 38428071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.