These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33381362)

  • 1. Flow-to-Friction Transition in Simulated Calcite Gouge: Experiments and Microphysical Modeling.
    Chen J; Verberne BA; Niemeijer AR
    J Geophys Res Solid Earth; 2020 Nov; 125(11):e2020JB019970. PubMed ID: 33381362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microphysical Modeling of Carbonate Fault Friction at Slip Rates Spanning the Full Seismic Cycle.
    Chen J; Niemeijer AR; Spiers CJ
    J Geophys Res Solid Earth; 2021 Mar; 126(3):e2020JB021024. PubMed ID: 33868888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates.
    Proctor BP; Mitchell TM; Hirth G; Goldsby D; Zorzi F; Platt JD; Di Toro G
    J Geophys Res Solid Earth; 2014 Nov; 119(11):8107-8131. PubMed ID: 26167425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone.
    Verberne BA; Chen J; Niemeijer AR; de Bresser JHP; Pennock GM; Drury MR; Spiers CJ
    Nat Commun; 2017 Nov; 8(1):1645. PubMed ID: 29158513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent lab earthquakes in dynamically weakening fault gouge.
    Rubino V; Lapusta N; Rosakis AJ
    Nature; 2022 Jun; 606(7916):922-929. PubMed ID: 35650443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation.
    Niemeijer AR; Boulton C; Toy VG; Townend J; Sutherland R
    J Geophys Res Solid Earth; 2016 Feb; 121(2):624-647. PubMed ID: 27610290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scale dependence of rock friction at high work rate.
    Yamashita F; Fukuyama E; Mizoguchi K; Takizawa S; Xu S; Kawakata H
    Nature; 2015 Dec; 528(7581):254-7. PubMed ID: 26659187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An empirically based steady state friction law and implications for fault stability.
    Spagnuolo E; Nielsen S; Violay M; Di Toro G
    Geophys Res Lett; 2016 Apr; 43(7):3263-3271. PubMed ID: 27667875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition between frictional slip and ductile flow for halite shear zones at room temperature.
    Shimamoto T
    Science; 1986 Feb; 231(4739):711-4. PubMed ID: 17800795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An unload-induced direct-shear model for granular gouge friction in rock discontinuities.
    Wu W; Zou Y; Li X; Zhao J
    Rev Sci Instrum; 2014 Sep; 85(9):093902. PubMed ID: 25273734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanics of sea ice frictional slip from test basin scale experiments.
    Sammonds PR; Hatton DC; Feltham DL
    Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2086):. PubMed ID: 28025302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow-slip events in semi-brittle serpentinite fault zones.
    Goswami A; Barbot S
    Sci Rep; 2018 Apr; 8(1):6181. PubMed ID: 29670246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular origin of sliding friction and flash heating in rock and heterogeneous materials.
    Piroozan N; Sahimi M
    Sci Rep; 2020 Dec; 10(1):22264. PubMed ID: 33335303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From slow to fast faulting: recent challenges in earthquake fault mechanics.
    Nielsen S
    Philos Trans A Math Phys Eng Sci; 2017 Sep; 375(2103):. PubMed ID: 28827428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rock mechanics. Superplastic nanofibrous slip zones control seismogenic fault friction.
    Verberne BA; Plümper O; de Winter DA; Spiers CJ
    Science; 2014 Dec; 346(6215):1342-4. PubMed ID: 25504714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain localization in planar shear of granular media: the role of porosity and boundary conditions.
    Parez S; Travnickova T; Svoboda M; Aharonov E
    Eur Phys J E Soft Matter; 2021 Nov; 44(11):134. PubMed ID: 34731339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fault weakening and earthquake instability by powder lubrication.
    Reches Z; Lockner DA
    Nature; 2010 Sep; 467(7314):452-5. PubMed ID: 20865001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation of Stick-Slip Instability Within a Large-Scale Experimental Fault: Effects of Stress Heterogeneities Due to Loading and Gouge Layer Compaction.
    Buijze L; Guo Y; Niemeijer AR; Ma S; Spiers CJ
    J Geophys Res Solid Earth; 2020 Aug; 125(8):e2019JB018429. PubMed ID: 32999804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Discrete Elements Study of the Frictional Behavior of Fault Gouges.
    Papachristos E; Stefanou I; Sulem J
    J Geophys Res Solid Earth; 2023 Jan; 128(1):e2022JB025209. PubMed ID: 37035577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle size and energetics of gouge from earthquake rupture zones.
    Wilson B; Dewers T; Reches Z; Brune J
    Nature; 2005 Apr; 434(7034):749-52. PubMed ID: 15815626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.