These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 33381464)
1. What Can Cellular Redox, Iron, and Reactive Oxygen Species Suggest About the Mechanisms and Potential Therapy of COVID-19? Muhoberac BB Front Cell Infect Microbiol; 2020; 10():569709. PubMed ID: 33381464 [TBL] [Abstract][Full Text] [Related]
2. Elucidating of oxidative distress in COVID-19 and methods of its prevention. Barciszewska AM Chem Biol Interact; 2021 Aug; 344():109501. PubMed ID: 33974898 [TBL] [Abstract][Full Text] [Related]
3. Cardioprotective effects of iron chelator HAPI and ROS-activated boronate prochelator BHAPI against catecholamine-induced oxidative cellular injury. Hašková P; Jansová H; Bureš J; Macháček M; Jirkovská A; Franz KJ; Kovaříková P; Šimůnek T Toxicology; 2016 Sep; 371():17-28. PubMed ID: 27744045 [TBL] [Abstract][Full Text] [Related]
4. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Habib HM; Ibrahim S; Zaim A; Ibrahim WH Biomed Pharmacother; 2021 Apr; 136():111228. PubMed ID: 33454595 [TBL] [Abstract][Full Text] [Related]
5. Generation of reactive oxygen species by the redox cycling of nitroprusside. Ramakrishna Rao DN; Cederbaum AI Biochim Biophys Acta; 1996 Mar; 1289(2):195-202. PubMed ID: 8600973 [TBL] [Abstract][Full Text] [Related]
6. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. Naidu SAG; Clemens RA; Naidu AS J Diet Suppl; 2023; 20(2):312-371. PubMed ID: 35603834 [TBL] [Abstract][Full Text] [Related]
7. Redox Role of ROS and Inflammation in Pulmonary Diseases. Zuo L; Wijegunawardana D Adv Exp Med Biol; 2021; 1304():187-204. PubMed ID: 34019270 [TBL] [Abstract][Full Text] [Related]
8. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Kellner M; Noonepalle S; Lu Q; Srivastava A; Zemskov E; Black SM Adv Exp Med Biol; 2017; 967():105-137. PubMed ID: 29047084 [TBL] [Abstract][Full Text] [Related]
9. Use of iron chelators in preventing hydroxyl radical damage: adult respiratory distress syndrome as an experimental model for the pathophysiology and treatment of oxygen-radical-mediated tissue damage. Marx JJ; van Asbeck BS Acta Haematol; 1996; 95(1):49-62. PubMed ID: 8604586 [TBL] [Abstract][Full Text] [Related]
10. Redox Homeostasis Alteration Is Restored through Melatonin Treatment in COVID-19 Patients: A Preliminary Study. Soto ME; Pérez-Torres I; Manzano-Pech L; Palacios-Chavarría A; Valdez-Vázquez RR; Guarner-Lans V; Soria-Castro E; Díaz-Díaz E; Castrejón-Tellez V Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674128 [TBL] [Abstract][Full Text] [Related]
11. N-acetycysteine: A potential therapeutic agent in COVID-19 infection. Jaiswal N; Bhatnagar M; Shah H Med Hypotheses; 2020 Nov; 144():110133. PubMed ID: 32758904 [TBL] [Abstract][Full Text] [Related]
12. Friend or Foe: The Relativity of (Anti)oxidative Agents and Pathways. Szarka A; Lőrincz T; Hajdinák P Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563576 [TBL] [Abstract][Full Text] [Related]
13. Commentary: Could iron chelators prove to be useful as an adjunct to COVID-19 Treatment Regimens? Dalamaga M; Karampela I; Mantzoros CS Metabolism; 2020 Jul; 108():154260. PubMed ID: 32418885 [TBL] [Abstract][Full Text] [Related]
14. Future Perspectives of Oxytosis/Ferroptosis Research in Neurodegeneration Diseases. Viktorinova A Cell Mol Neurobiol; 2023 Aug; 43(6):2761-2768. PubMed ID: 37093436 [TBL] [Abstract][Full Text] [Related]
15. Dual effects of supplemental oxygen on pulmonary infection, inflammatory lung injury, and neuromodulation in aging and COVID-19. Lin M; Stewart MT; Zefi S; Mateti KV; Gauthier A; Sharma B; Martinez LR; Ashby CR; Mantell LL Free Radic Biol Med; 2022 Sep; 190():247-263. PubMed ID: 35964839 [TBL] [Abstract][Full Text] [Related]
16. The potential role of ferroptosis in COVID-19-related cardiovascular injury. Yang L; Wu Y; Jin W; Mo N; Ye G; Su Z; Tang L; Wang Y; Li Y; Du J Biomed Pharmacother; 2023 Dec; 168():115637. PubMed ID: 37844358 [TBL] [Abstract][Full Text] [Related]
17. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Fibach E; Rachmilewitz EA Ann N Y Acad Sci; 2010 Aug; 1202():10-6. PubMed ID: 20712766 [TBL] [Abstract][Full Text] [Related]
18. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Babizhayev MA Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059 [TBL] [Abstract][Full Text] [Related]
19. Redox Cycling Dioxonaphthoimidazoliums Disrupt Iron Homeostasis in Mycobacterium bovis Bacillus Calmette-Guérin. Li M; Yamada Y; Rodriguez GM; Dick T; Go ML Microbiol Spectr; 2022 Dec; 10(6):e0197022. PubMed ID: 36377959 [TBL] [Abstract][Full Text] [Related]
20. Multiplex Testing of Oxidative-Reductive Pathway in Patients with COVID-19. Guest PC; Abbasifard M; Jamialahmadi T; Majeed M; Kesharwani P; Sahebkar A Methods Mol Biol; 2022; 2511():333-344. PubMed ID: 35838972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]