BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 33381765)

  • 1. Strategies for Peripheral Nerve Repair.
    Wilcox M; Gregory H; Powell R; Quick TJ; Phillips JB
    Curr Tissue Microenviron Rep; 2020; 1(2):49-59. PubMed ID: 33381765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development.
    Kong L; Gao X; Qian Y; Sun W; You Z; Fan C
    Theranostics; 2022; 12(11):4993-5014. PubMed ID: 35836812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Schwann Cell-Based Therapies for Injury Peripheral Nerve Reconstruction.
    Su Q; Nasser MI; He J; Deng G; Ouyang Q; Zhuang D; Deng Y; Hu H; Liu N; Li Z; Zhu P; Li G
    Front Cell Neurosci; 2022; 16():865266. PubMed ID: 35602558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Technique for Introducing Schwann Cells Into Peripheral Nerve Repair Sites.
    Errante EL; Diaz A; Smartz T; Khan A; Silvera R; Brooks AE; Lee YS; Burks SS; Levi AD
    Front Cell Neurosci; 2022; 16():929494. PubMed ID: 35846565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair?
    Iatridis JC; Nicoll SB; Michalek AJ; Walter BA; Gupta MS
    Spine J; 2013 Mar; 13(3):243-62. PubMed ID: 23369494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms.
    Ye Z; Wei J; Zhan C; Hou J
    Front Neurosci; 2022; 16():917587. PubMed ID: 35769702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a composite injury model of severe lower limb bone and nerve trauma.
    Uhrig BA; Clements IP; Boerckel JD; Huebsch N; Bellamkonda RV; Guldberg RE
    J Tissue Eng Regen Med; 2014 Jun; 8(6):432-41. PubMed ID: 22689452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery.
    Daly W; Yao L; Zeugolis D; Windebank A; Pandit A
    J R Soc Interface; 2012 Feb; 9(67):202-21. PubMed ID: 22090283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical considerations concerning the use of stem cells for peripheral nerve repair.
    Walsh S; Midha R
    Neurosurg Focus; 2009 Feb; 26(2):E2. PubMed ID: 19435443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of physical, biochemical, and electrical signaling on Schwann cell plasticity.
    Smith CS; Orkwis JA; Bryan AE; Xu Z; Harris GM
    Eur J Cell Biol; 2022; 101(4):151277. PubMed ID: 36265214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomanufacturing of Axon-Based Tissue Engineered Nerve Grafts Using Porcine GalSafe Neurons.
    Katiyar KS; Burrell JC; Laimo FA; Browne KD; Bianchi JR; Walters A; Ayares DL; Smith DH; Ali ZS; Ledebur HC; Cullen DK
    Tissue Eng Part A; 2021 Oct; 27(19-20):1305-1320. PubMed ID: 33514288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair.
    Zeng Z; Yang Y; Deng J; Saif Ur Rahman M; Sun C; Xu S
    Bioengineering (Basel); 2022 Jun; 9(7):. PubMed ID: 35877343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between Schwann cells and other cells during repair of peripheral nerve injury.
    Qu WR; Zhu Z; Liu J; Song DB; Tian H; Chen BP; Li R; Deng LX
    Neural Regen Res; 2021 Jan; 16(1):93-98. PubMed ID: 32788452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies.
    López-Cebral R; Silva-Correia J; Reis RL; Silva TH; Oliveira JM
    ACS Biomater Sci Eng; 2017 Dec; 3(12):3098-3122. PubMed ID: 33445354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered hydrogels for peripheral nerve repair.
    Liu Y; Zhang X; Xiao C; Liu B
    Mater Today Bio; 2023 Jun; 20():100668. PubMed ID: 37273791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational bioengineering strategies for peripheral nerve regeneration: opportunities, challenges, and novel concepts.
    Sarhane KA; Qiu C; Harris TGW; Hanwright PJ; Mao HQ; Tuffaha SH
    Neural Regen Res; 2023 Jun; 18(6):1229-1234. PubMed ID: 36453398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classic axon guidance molecules control correct nerve bridge tissue formation and precise axon regeneration.
    Dun XP; Parkinson DB
    Neural Regen Res; 2020 Jan; 15(1):6-9. PubMed ID: 31535634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration.
    Li R; Li DH; Zhang HY; Wang J; Li XK; Xiao J
    Acta Pharmacol Sin; 2020 Oct; 41(10):1289-1300. PubMed ID: 32123299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-based hybrid materials as promising scaffolds for peripheral nerve regeneration.
    Grijalvo S; Díaz DD
    Neurochem Int; 2021 Jul; 147():105005. PubMed ID: 33667593
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.