BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33381812)

  • 1. DriverGroup: a novel method for identifying driver gene groups.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Li J; Le TD
    Bioinformatics; 2020 Dec; 36(Suppl_2):i583-i591. PubMed ID: 33381812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CBNA: A control theory based method for identifying coding and non-coding cancer drivers.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD
    PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pDriver: a novel method for unravelling personalized coding and miRNA cancer drivers.
    Pham VVH; Liu L; Bracken CP; Nguyen T; Goodall GJ; Li J; Le TD
    Bioinformatics; 2021 Oct; 37(19):3285-3292. PubMed ID: 33904576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NIBNA: a network-based node importance approach for identifying breast cancer drivers.
    Chaudhary MS; Pham VVH; Le TD
    Bioinformatics; 2021 Sep; 37(17):2521-2528. PubMed ID: 33677485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GenHITS: A network science approach to driver gene detection in human regulatory network using gene's influence evaluation.
    Akhavan-Safar M; Teimourpour B; Kargari M
    J Biomed Inform; 2021 Feb; 114():103661. PubMed ID: 33326867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A network-based method for identifying cancer driver genes based on node control centrality.
    Li F; Li H; Shang J; Liu JX; Dai L; Liu X; Li Y
    Exp Biol Med (Maywood); 2023 Feb; 248(3):232-241. PubMed ID: 36573462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of cancer driver genes through network-based moment propagation of mutation scores.
    Gumpinger AC; Lage K; Horn H; Borgwardt K
    Bioinformatics; 2020 Jul; 36(Suppl_1):i508-i515. PubMed ID: 32657361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A workflow to study mechanistic indicators for driver gene prediction with Moonlight.
    Nourbakhsh M; Saksager A; Tom N; Chen XS; Colaprico A; Olsen C; Tiberti M; Papaleo E
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37551622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring gene-patient association to identify personalized cancer driver genes by linear neighborhood propagation.
    Huang Y; Chen F; Sun H; Zhong C
    BMC Bioinformatics; 2024 Jan; 25(1):34. PubMed ID: 38254011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering driver genes in breast cancer through an innovative machine learning mutational analysis method.
    Taheri G; Habibi M
    Comput Biol Med; 2024 Mar; 171():108234. PubMed ID: 38430742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new correlation clustering method for cancer mutation analysis.
    Hou JP; Emad A; Puleo GJ; Ma J; Milenkovic O
    Bioinformatics; 2016 Dec; 32(24):3717-3728. PubMed ID: 27540270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network.
    Zhang SW; Wang ZN; Li Y; Guo WF
    BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Cancer Specific Driver Modules Using a Network-Based Method.
    Li F; Gao L; Wang P; Hu Y
    Molecules; 2018 May; 23(5):. PubMed ID: 29738475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring subgroup-specific driver genes from heterogeneous cancer samples via subspace learning with subgroup indication.
    Xi J; Yuan X; Wang M; Li A; Li X; Huang Q
    Bioinformatics; 2020 Mar; 36(6):1855-1863. PubMed ID: 31626284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driver gene detection through Bayesian network integration of mutation and expression profiles.
    Chen Z; Lu Y; Cao B; Zhang W; Edwards A; Zhang K
    Bioinformatics; 2022 May; 38(10):2781-2790. PubMed ID: 35561191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.