These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33381816)

  • 1. Graph convolutional networks for epigenetic state prediction using both sequence and 3D genome data.
    Lanchantin J; Qi Y
    Bioinformatics; 2020 Dec; 36(Suppl_2):i659-i667. PubMed ID: 33381816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal learning of noncoding variant effects using genome sequence and chromatin structure.
    Tan W; Shen Y
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37669132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. seqgra: principled selection of neural network architectures for genomics prediction tasks.
    Krismer K; Hammelman J; Gifford DK
    Bioinformatics; 2022 Apr; 38(9):2381-2388. PubMed ID: 35191481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating Long-Range Regulatory Interactions to Predict Gene Expression Using Graph Convolutional Networks.
    Bigness J; Loinaz X; Patel S; Larschan E; Singh R
    J Comput Biol; 2022 May; 29(5):409-424. PubMed ID: 35325548
    [No Abstract]   [Full Text] [Related]  

  • 6. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts.
    Nair S; Kim DS; Perricone J; Kundaje A
    Bioinformatics; 2019 Jul; 35(14):i108-i116. PubMed ID: 31510655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data.
    Zhuang Z; Shen X; Pan W
    Bioinformatics; 2019 Sep; 35(17):2899-2906. PubMed ID: 30649185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MSNet-4mC: learning effective multi-scale representations for identifying DNA N4-methylcytosine sites.
    Liu C; Song J; Ogata H; Akutsu T
    Bioinformatics; 2022 Nov; 38(23):5160-5167. PubMed ID: 36205602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.
    Li Y; Hu J; Zhang C; Yu DJ; Zhang Y
    Bioinformatics; 2019 Nov; 35(22):4647-4655. PubMed ID: 31070716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChromDMM: a Dirichlet-multinomial mixture model for clustering heterogeneous epigenetic data.
    Osmala M; Eraslan G; Lähdesmäki H
    Bioinformatics; 2022 Aug; 38(16):3863-3870. PubMed ID: 35786716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Chromatin Interactions from DNA Sequence Using DeepC.
    Schwessinger R
    Methods Mol Biol; 2023; 2624():19-42. PubMed ID: 36723807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SilenceREIN: seeking silencers on anchors of chromatin loops by deep graph neural networks.
    Pan JH; Du PF
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38168841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions.
    Yan Z; Hamilton WL; Blanchette M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i276-i284. PubMed ID: 32657407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of gene co-expression from chromatin contacts with graph attention network.
    Zhang K; Wang C; Sun L; Zheng J
    Bioinformatics; 2022 Sep; 38(19):4457-4465. PubMed ID: 35929807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape.
    Ding P; Wang Y; Zhang X; Gao X; Liu G; Yu B
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GraphQA: protein model quality assessment using graph convolutional networks.
    Baldassarre F; Menéndez Hurtado D; Elofsson A; Azizpour H
    Bioinformatics; 2021 Apr; 37(3):360-366. PubMed ID: 32780838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering epistatic feature interactions from neural network models of regulatory DNA sequences.
    Greenside P; Shimko T; Fordyce P; Kundaje A
    Bioinformatics; 2018 Sep; 34(17):i629-i637. PubMed ID: 30423062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.