These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33381841)
1. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. Liu Q; Hu Z; Jiang R; Zhou M Bioinformatics; 2020 Dec; 36(Suppl_2):i911-i918. PubMed ID: 33381841 [TBL] [Abstract][Full Text] [Related]
2. DRN-CDR: A cancer drug response prediction model using multi-omics and drug features. Saranya KR; Vimina ER Comput Biol Chem; 2024 Oct; 112():108175. PubMed ID: 39191166 [TBL] [Abstract][Full Text] [Related]
3. DeepAEG: a model for predicting cancer drug response based on data enhancement and edge-collaborative update strategies. Lao C; Zheng P; Chen H; Liu Q; An F; Li Z BMC Bioinformatics; 2024 Mar; 25(1):105. PubMed ID: 38461284 [TBL] [Abstract][Full Text] [Related]
4. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach. Ali M; Khan SA; Wennerberg K; Aittokallio T Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355 [TBL] [Abstract][Full Text] [Related]
5. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Peng W; Liu H; Dai W; Yu N; Wang J Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568 [TBL] [Abstract][Full Text] [Related]
6. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Li Y; Guo Z; Gao X; Wang G Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154 [TBL] [Abstract][Full Text] [Related]
7. GraphCDR: a graph neural network method with contrastive learning for cancer drug response prediction. Liu X; Song C; Huang F; Fu H; Xiao W; Zhang W Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34727569 [TBL] [Abstract][Full Text] [Related]
8. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer. Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589 [TBL] [Abstract][Full Text] [Related]
9. Integration of autoencoder and graph convolutional network for predicting breast cancer drug response. Abinas V; Abhinav U; Haneem EM; Vishnusankar A; Nazeer KAA J Bioinform Comput Biol; 2024 Jun; 22(3):2450013. PubMed ID: 39051144 [No Abstract] [Full Text] [Related]
10. DualGCN: a dual graph convolutional network model to predict cancer drug response. Ma T; Liu Q; Li H; Zhou M; Jiang R; Zhang X BMC Bioinformatics; 2022 Apr; 23(Suppl 4):129. PubMed ID: 35428192 [TBL] [Abstract][Full Text] [Related]
11. A cross-level information transmission network for hierarchical omics data integration and phenotype prediction from a new genotype. He D; Xie L Bioinformatics; 2021 Dec; 38(1):204-210. PubMed ID: 34390577 [TBL] [Abstract][Full Text] [Related]
12. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction. Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408 [TBL] [Abstract][Full Text] [Related]
13. Predicting Drug Response Based on Multi-Omics Fusion and Graph Convolution. Peng W; Chen T; Dai W IEEE J Biomed Health Inform; 2022 Mar; 26(3):1384-1393. PubMed ID: 34347616 [TBL] [Abstract][Full Text] [Related]
14. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers. Cai R; Chen X; Fang Y; Wu M; Hao Y Bioinformatics; 2020 Aug; 36(16):4458-4465. PubMed ID: 32221609 [TBL] [Abstract][Full Text] [Related]
15. Ensembling graph attention networks for human microbe-drug association prediction. Long Y; Wu M; Liu Y; Kwoh CK; Luo J; Li X Bioinformatics; 2020 Dec; 36(Suppl_2):i779-i786. PubMed ID: 33381844 [TBL] [Abstract][Full Text] [Related]
16. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers. Wang S; Xu F; Li Y; Wang J; Zhang K; Liu Y; Wu M; Zheng J Bioinformatics; 2021 Jul; 37(Suppl_1):i418-i425. PubMed ID: 34252965 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Graph Convolutional Network With Online Masked Autoencoder for Robust Multimodal Cancer Survival Prediction. Hou W; Lin C; Yu L; Qin J; Yu R; Wang L IEEE Trans Med Imaging; 2023 Aug; 42(8):2462-2473. PubMed ID: 37028064 [TBL] [Abstract][Full Text] [Related]
18. MOLI: multi-omics late integration with deep neural networks for drug response prediction. Sharifi-Noghabi H; Zolotareva O; Collins CC; Ester M Bioinformatics; 2019 Jul; 35(14):i501-i509. PubMed ID: 31510700 [TBL] [Abstract][Full Text] [Related]
19. Chromatin accessibility prediction via a hybrid deep convolutional neural network. Liu Q; Xia F; Yin Q; Jiang R Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282 [TBL] [Abstract][Full Text] [Related]
20. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction. Lee M; Kim PJ; Joe H; Kim HG Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]