BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33381842)

  • 1. Adversarial deconfounding autoencoder for learning robust gene expression embeddings.
    Dincer AB; Janizek JD; Lee SI
    Bioinformatics; 2020 Dec; 36(Suppl_2):i573-i582. PubMed ID: 33381842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Integrative Analysis of Soybean Transcriptome Using an Unsupervised Autoencoder Model.
    Su L; Xu C; Zeng S; Su L; Joshi T; Stacey G; Xu D
    Front Plant Sci; 2022; 13():831204. PubMed ID: 35310659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Batch equalization with a generative adversarial network.
    Qian WW; Xia C; Venugopalan S; Narayanaswamy A; Dimon M; Ashdown GW; Baum J; Peng J; Ando DM
    Bioinformatics; 2020 Dec; 36(Suppl_2):i875-i883. PubMed ID: 33381813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-drug interaction prediction with Wasserstein Adversarial Autoencoder-based knowledge graph embeddings.
    Dai Y; Guo C; Guo W; Eickhoff C
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33126246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. stAA: adversarial graph autoencoder for spatial clustering task of spatially resolved transcriptomics.
    Fang Z; Liu T; Zheng R; A J; Yin M; Li M
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38189544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep compressive autoencoder for action potential compression in large-scale neural recording.
    Wu T; Zhao W; Keefer E; Yang Z
    J Neural Eng; 2018 Dec; 15(6):066019. PubMed ID: 30215605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear functional organization of the omic embedding space.
    Xenos A; Malod-Dognin N; Milinković S; Pržulj N
    Bioinformatics; 2021 Nov; 37(21):3839-3847. PubMed ID: 34213534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means.
    Hadipour H; Liu C; Davis R; Cardona ST; Hu P
    BMC Bioinformatics; 2022 Apr; 23(Suppl 4):132. PubMed ID: 35428173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Clustering Analysis via Dual Variational Autoencoder With Spherical Latent Embeddings.
    Yang L; Fan W; Bouguila N
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):6303-6312. PubMed ID: 34941534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A context-aware deconfounding autoencoder for robust prediction of personalized clinical drug response from cell-line compound screening.
    He D; Liu Q; Wu Y; Xie L
    Nat Mach Intell; 2022 Oct; 4(10):879-892. PubMed ID: 38895093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AITL: Adversarial Inductive Transfer Learning with input and output space adaptation for pharmacogenomics.
    Sharifi-Noghabi H; Peng S; Zolotareva O; Collins CC; Ester M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i380-i388. PubMed ID: 32657371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuro-symbolic representation learning on biological knowledge graphs.
    Alshahrani M; Khan MA; Maddouri O; Kinjo AR; Queralt-Rosinach N; Hoehndorf R
    Bioinformatics; 2017 Sep; 33(17):2723-2730. PubMed ID: 28449114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AIME: Autoencoder-based integrative multi-omics data embedding that allows for confounder adjustments.
    Yu T
    PLoS Comput Biol; 2022 Jan; 18(1):e1009826. PubMed ID: 35081109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FoldHSphere: deep hyperspherical embeddings for protein fold recognition.
    Villegas-Morcillo A; Sanchez V; Gomez AM
    BMC Bioinformatics; 2021 Oct; 22(1):490. PubMed ID: 34641786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep feature extraction of single-cell transcriptomes by generative adversarial network.
    Bahrami M; Maitra M; Nagy C; Turecki G; Rabiee HR; Li Y
    Bioinformatics; 2021 Jun; 37(10):1345-1351. PubMed ID: 33226074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity.
    Pan X; Zuallaert J; Wang X; Shen HB; Campos EP; Marushchak DO; De Neve W
    Bioinformatics; 2021 Jan; 36(21):5159-5168. PubMed ID: 32692832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures.
    Martínez-Enguita D; Dwivedi SK; Jörnsten R; Gustafsson M
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37587790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.