These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of cross-linkage on fatigue life and failure modes of stainless steel posterior spinal constructs. Stambough JL; Sabri EH; Huston RL; Genaidy AM; Al-Khatib F; Serhan H J Spinal Disord; 1998 Jun; 11(3):221-6. PubMed ID: 9657547 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determination of failure modes. Stambough JL; Genaidy AM; Huston RL; Serhan H; El-khatib F; Sabri EH J Spinal Disord; 1997 Dec; 10(6):473-81. PubMed ID: 9438811 [TBL] [Abstract][Full Text] [Related]
4. The influences of electrical potential and surface finish on the fatigue life of surgical implant materials. Bapna MS; Lautenschlager EP; Moser JB J Biomed Mater Res; 1975 Nov; 9(6):611-21. PubMed ID: 1184609 [TBL] [Abstract][Full Text] [Related]
5. Mechanical consequences of rod contouring and residual scoliosis in sublaminar segmental instrumentation. Johnston CE; Ashman RB; Sherman MC; Eberle CF; Herndon WA; Sullivan JA; King AG; Burke SW J Orthop Res; 1987; 5(2):206-16. PubMed ID: 3572590 [TBL] [Abstract][Full Text] [Related]
9. [Biomechanical studies of the spine. Their significance for the development of rational treatment techniques]. Magerl F; Angst M; Schläpfer F Orthopade; 1992 Feb; 21(1):24-8. PubMed ID: 1549333 [TBL] [Abstract][Full Text] [Related]
10. Strain distribution in the proximal femur with flexible composite and metallic femoral components under axial and torsional loads. Otani T; Whiteside LA; White SE J Biomed Mater Res; 1993 May; 27(5):575-85. PubMed ID: 8314810 [TBL] [Abstract][Full Text] [Related]
11. Modern spinal instrumentation. Part 1: normal spinal implants. Davis W; Allouni AK; Mankad K; Prezzi D; Elias T; Rankine J; Davagnanam I Clin Radiol; 2013 Jan; 68(1):64-74. PubMed ID: 22658915 [TBL] [Abstract][Full Text] [Related]
12. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? Serhan H; Slivka M; Albert T; Kwak SD Spine J; 2004; 4(4):379-87. PubMed ID: 15246296 [TBL] [Abstract][Full Text] [Related]
13. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design. Chen PQ; Lin SJ; Wu SS; So H Spine (Phila Pa 1976); 2003 May; 28(9):881-6; discussion 887. PubMed ID: 12942002 [TBL] [Abstract][Full Text] [Related]
15. The invention of new anterior spinal instrumentation prototype: a structural analysis of KKU expandable cage. Sae-Jung S; Jirarattanaphochai K; Saengnipanthkul S J Med Assoc Thai; 2007 Aug; 90(8):1621-6. PubMed ID: 17926993 [TBL] [Abstract][Full Text] [Related]
16. [Biodeterioration and corrosion of metallic implants and prostheses]. López GD Medicina (B Aires); 1993; 53(3):260-74. PubMed ID: 8114635 [TBL] [Abstract][Full Text] [Related]
17. Segmental spinal instrumentation. A study of the mechanical properties of materials used for sublaminar fixation. Crawford RJ; Sell PJ; Ali MS; Dove J Spine (Phila Pa 1976); 1989 Jun; 14(6):632-5. PubMed ID: 2749380 [TBL] [Abstract][Full Text] [Related]
18. Recent developments in implants for orthopedic surgery. Amstutz HC Surg Annu; 1971; 3(0):385-408. PubMed ID: 4950717 [No Abstract] [Full Text] [Related]
19. The effects of rod contouring on spinal construct fatigue strength. Lindsey C; Deviren V; Xu Z; Yeh RF; Puttlitz CM Spine (Phila Pa 1976); 2006 Jul; 31(15):1680-7. PubMed ID: 16816763 [TBL] [Abstract][Full Text] [Related]