BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 33382175)

  • 1. Translation initiation and its relevance in colorectal cancer.
    Minnee E; Faller WJ
    FEBS J; 2021 Dec; 288(23):6635-6651. PubMed ID: 33382175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation Initiation Factors: Reprogramming Protein Synthesis in Cancer.
    Chu J; Cargnello M; Topisirovic I; Pelletier J
    Trends Cell Biol; 2016 Dec; 26(12):918-933. PubMed ID: 27426745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing.
    Ivanov IP; Shin BS; Loughran G; Tzani I; Young-Baird SK; Cao C; Atkins JF; Dever TE
    Mol Cell; 2018 Apr; 70(2):254-264.e6. PubMed ID: 29677493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic checkpoint at a late step in translation initiation.
    Milon P; Konevega AL; Gualerzi CO; Rodnina MV
    Mol Cell; 2008 Jun; 30(6):712-20. PubMed ID: 18570874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational reprogramming in cellular stress response.
    Liu B; Qian SB
    Wiley Interdiscip Rev RNA; 2014; 5(3):301-15. PubMed ID: 24375939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. eIF5A and EF-P: two unique translation factors are now traveling the same road.
    Rossi D; Kuroshu R; Zanelli CF; Valentini SR
    Wiley Interdiscip Rev RNA; 2014; 5(2):209-22. PubMed ID: 24402910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational reprogramming of colorectal cancer cells induced by 5-fluorouracil through a miRNA-dependent mechanism.
    Bash-Imam Z; Thérizols G; Vincent A; Lafôrets F; Polay Espinoza M; Pion N; Macari F; Pannequin J; David A; Saurin JC; Mertani HC; Textoris J; Auboeuf D; Catez F; Dalla Venezia N; Dutertre M; Marcel V; Diaz JJ
    Oncotarget; 2017 Jul; 8(28):46219-46233. PubMed ID: 28515355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translation initiation in cancer at a glance.
    Smith RCL; Kanellos G; Vlahov N; Alexandrou C; Willis AE; Knight JRP; Sansom OJ
    J Cell Sci; 2021 Jan; 134(1):. PubMed ID: 33441326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation of protein synthesis in eukaryotic cells.
    Pain VM
    Eur J Biochem; 1996 Mar; 236(3):747-71. PubMed ID: 8665893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation.
    Pause A; Méthot N; Svitkin Y; Merrick WC; Sonenberg N
    EMBO J; 1994 Mar; 13(5):1205-15. PubMed ID: 8131750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors.
    Andreev DE; Terenin IM; Dunaevsky YE; Dmitriev SE; Shatsky IN
    Mol Cell Biol; 2006 Apr; 26(8):3164-9. PubMed ID: 16581790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of gene expression at the level of translation initiation.
    Kaufman RJ
    Curr Opin Biotechnol; 1994 Oct; 5(5):550-7. PubMed ID: 7765472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translation initiation of viral mRNAs.
    López-Lastra M; Ramdohr P; Letelier A; Vallejos M; Vera-Otarola J; Valiente-Echeverría F
    Rev Med Virol; 2010 May; 20(3):177-95. PubMed ID: 20440748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ribosome in action: Tuning of translational efficiency and protein folding.
    Rodnina MV
    Protein Sci; 2016 Aug; 25(8):1390-406. PubMed ID: 27198711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation.
    Grill S; Gualerzi CO; Londei P; Bläsi U
    EMBO J; 2000 Aug; 19(15):4101-10. PubMed ID: 10921890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translation initiation: structures, mechanisms and evolution.
    Marintchev A; Wagner G
    Q Rev Biophys; 2004; 37(3-4):197-284. PubMed ID: 16194295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamines are oncometabolites that regulate the LIN28/let-7 pathway in colorectal cancer cells.
    Paz EA; LaFleur B; Gerner EW
    Mol Carcinog; 2014 Feb; 53 Suppl 1():E96-106. PubMed ID: 23737330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoregulatory systems controlling translation factor expression: thermostat-like control of translational accuracy.
    Betney R; de Silva E; Krishnan J; Stansfield I
    RNA; 2010 Apr; 16(4):655-63. PubMed ID: 20185543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipase D1 Inhibition Linked to Upregulation of ICAT Blocks Colorectal Cancer Growth Hyperactivated by Wnt/β-Catenin and PI3K/Akt Signaling.
    Kang DW; Lee BH; Suh YA; Choi YS; Jang SJ; Kim YM; Choi KY; Min DS
    Clin Cancer Res; 2017 Dec; 23(23):7340-7350. PubMed ID: 28939743
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetic control of translation initiation in bacteria.
    Milón P; Rodnina MV
    Crit Rev Biochem Mol Biol; 2012; 47(4):334-48. PubMed ID: 22515367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.