These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33382273)

  • 1. On the Electronic Structure Origin of Mechanochemically Induced Selectivity in Acid-Catalyzed Chitin Hydrolysis.
    De Chavez D; Kobayashi H; Fukuoka A; Hasegawa JY
    J Phys Chem A; 2021 Jan; 125(1):187-197. PubMed ID: 33382273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid.
    Einbu A; Vårum KM
    Biomacromolecules; 2007 Jan; 8(1):309-14. PubMed ID: 17206822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Depolymerization of Chitin with Retention of N-Acetyl Group.
    Yabushita M; Kobayashi H; Kuroki K; Ito S; Fukuoka A
    ChemSusChem; 2015 Nov; 8(22):3760-3. PubMed ID: 26538108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of chitin and its hydrolysis to GlcNAc and GlcN.
    Einbu A; Vårum KM
    Biomacromolecules; 2008 Jul; 9(7):1870-5. PubMed ID: 18540645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of tensile and compressive forces on the hydrolysis of cellulose and chitin.
    Kobayashi H; Suzuki Y; Sagawa T; Kuroki K; Hasegawa JY; Fukuoka A
    Phys Chem Chem Phys; 2021 Aug; 23(30):15908-15916. PubMed ID: 34160486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin.
    Ajavakom A; Supsvetson S; Somboot A; Sukwattanasinitt M
    Carbohydr Polym; 2012 Sep; 90(1):73-7. PubMed ID: 24751012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Mechanocatalytic Conversion of Biomass: A Low-Energy One-Step Reaction Mechanism by Applying Mechanical Force.
    Amirjalayer S; Fuchs H; Marx D
    Angew Chem Int Ed Engl; 2019 Apr; 58(16):5232-5235. PubMed ID: 30803114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox mechanism of glycosidic bond hydrolysis catalyzed by 6-phospho-alpha-glucosidase: a DFT study.
    Huang W; Llano J; Gauld JW
    J Phys Chem B; 2010 Sep; 114(34):11196-206. PubMed ID: 20698522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanochemical deconstruction of lignocellulosic cell wall polymers with ball-milling.
    Liu H; Chen X; Ji G; Yu H; Gao C; Han L; Xiao W
    Bioresour Technol; 2019 Aug; 286():121364. PubMed ID: 31026715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid.
    Einbu A; Grasdalen H; Vårum KM
    Carbohydr Res; 2007 Jun; 342(8):1055-62. PubMed ID: 17359948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of protonation and deprotonation of 3-methyl-2'-deoxyadenosine on N-glycosidic bond cleavage.
    Ebrahimi A; Habibi-Khorassani M; Bazzi S
    Phys Chem Chem Phys; 2011 Feb; 13(8):3334-43. PubMed ID: 21267490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and energetics for N-glycosidic bond cleavage of protonated 2'-deoxyguanosine and guanosine.
    Wu RR; Chen Y; Rodgers MT
    Phys Chem Chem Phys; 2016 Jan; 18(4):2968-80. PubMed ID: 26740232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational analyses of the reaction coordinate of glycosidases.
    Davies GJ; Planas A; Rovira C
    Acc Chem Res; 2012 Feb; 45(2):308-16. PubMed ID: 21923088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low energy electron induced cytosine base release in 2'-deoxycytidine-3'-monophosphate via glycosidic bond cleavage: a time-dependent wavepacket study.
    Bhaskaran R; Sarma M
    J Chem Phys; 2014 Sep; 141(10):104309. PubMed ID: 25217918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the catalyzed hydrolysis of β-1,4 glycosidic bonds using density functional theory.
    Fleming KL; Pfaendtner J
    J Phys Chem A; 2013 Dec; 117(51):14200-8. PubMed ID: 24266504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomeric effect in "high energy" phosphate bonds. Selective destabilization of the scissile bond and modulation of the exothermicity of hydrolysis.
    Ruben EA; Plumley JA; Chapman MS; Evanseck JD
    J Am Chem Soc; 2008 Mar; 130(11):3349-58. PubMed ID: 18302368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms and energetics for N-glycosidic bond cleavage of protonated adenine nucleosides: N3 protonation induces base rotation and enhances N-glycosidic bond stability.
    Wu RR; Rodgers MT
    Phys Chem Chem Phys; 2016 Jun; 18(23):16021-32. PubMed ID: 27240654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical exploration of the reactivity of cellulose models under non-thermal plasma conditions-mechanistic and NBO studies.
    Lamine W; Guégan F; Jérôme F; Frapper G
    J Comput Chem; 2022 Jul; 43(20):1334-1341. PubMed ID: 35670154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O2 Protonation Controls Threshold Behavior for N-Glycosidic Bond Cleavage of Protonated Cytosine Nucleosides.
    Wu RR; Rodgers MT
    J Phys Chem B; 2016 Jun; 120(21):4803-11. PubMed ID: 27159774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low energy electron attachment to the adenosine site of DNA.
    Gu J; Wang J; Leszczynski J
    J Phys Chem B; 2011 Dec; 115(49):14831-7. PubMed ID: 22034990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.