These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33382583)
1. Subcutaneous Energy/Signal Transmission Based on Silk Fibroin Up-Conversion Photonic Amplification. Hu F; Li W; Zou M; Li Y; Chen F; Lin N; Guo W; Liu XY ACS Nano; 2021 Jun; 15(6):9559-9567. PubMed ID: 33382583 [TBL] [Abstract][Full Text] [Related]
2. Highly flexible and lightweight organic solar cells on biocompatible silk fibroin. Liu Y; Qi N; Song T; Jia M; Xia Z; Yuan Z; Yuan W; Zhang KQ; Sun B ACS Appl Mater Interfaces; 2014 Dec; 6(23):20670-5. PubMed ID: 25405590 [TBL] [Abstract][Full Text] [Related]
3. New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible Meso-Electronics/Photonics Based on Cocoon Silk Materials. Shi C; Hu F; Wu R; Xu Z; Shao G; Yu R; Liu XY Adv Mater; 2021 Dec; 33(50):e2005910. PubMed ID: 33852764 [TBL] [Abstract][Full Text] [Related]
4. Flexible Meso Electronics and Photonics Based on Cocoon Silk and Applications. Lu C; Wang X; Liu XY ACS Biomater Sci Eng; 2024 May; 10(5):2784-2804. PubMed ID: 38597279 [TBL] [Abstract][Full Text] [Related]
5. Silk Fibroin for Flexible Electronic Devices. Zhu B; Wang H; Leow WR; Cai Y; Loh XJ; Han MY; Chen X Adv Mater; 2016 Jun; 28(22):4250-65. PubMed ID: 26684370 [TBL] [Abstract][Full Text] [Related]
6. Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). Koh LD; Yeo J; Lee YY; Ong Q; Han M; Tee BC Mater Sci Eng C Mater Biol Appl; 2018 May; 86():151-172. PubMed ID: 29525090 [TBL] [Abstract][Full Text] [Related]
7. One-step 3D printed intelligent silk fibroin artificial skin with built-in electronics and microfluidics. Guo M; Li Q; Gao B; He B Analyst; 2021 Sep; 146(19):5934-5941. PubMed ID: 34570843 [TBL] [Abstract][Full Text] [Related]
8. A facile strategy for the preparation of photothermal silk fibroin aerogels with antibacterial and oil-water separation abilities. Nong Y; Ren Y; Wang P; Zhou M; Yu Y; Yuan J; Xu B; Wang Q J Colloid Interface Sci; 2021 Dec; 603():518-529. PubMed ID: 34216949 [TBL] [Abstract][Full Text] [Related]
9. Silk Fibroin As an Immobilization Matrix for Sensing Applications. Prakash NJ; Mane PP; George SM; Kandasubramanian B ACS Biomater Sci Eng; 2021 Jun; 7(6):2015-2042. PubMed ID: 33861079 [TBL] [Abstract][Full Text] [Related]
10. Gamma-radiation synthesis of silk fibroin coated CdSe quantum dots and their biocompatibility and photostability in living cells. Chang SQ; Dai YD; Kang B; Han W; Chen D J Nanosci Nanotechnol; 2009 Oct; 9(10):5693-700. PubMed ID: 19908440 [TBL] [Abstract][Full Text] [Related]
11. Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk. Molinnus D; Drinic A; Iken H; Kröger N; Zinser M; Smeets R; Köpf M; Kopp A; Schöning MJ Biosens Bioelectron; 2021 Jul; 183():113204. PubMed ID: 33836429 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes. Lv L; Han X; Zong L; Li M; You J; Wu X; Li C ACS Nano; 2017 Aug; 11(8):8178-8184. PubMed ID: 28723068 [TBL] [Abstract][Full Text] [Related]
14. From Molecular Reconstruction of Mesoscopic Functional Conductive Silk Fibrous Materials to Remote Respiration Monitoring. Ma L; Liu Q; Wu R; Meng Z; Patil A; Yu R; Yang Y; Zhu S; Fan X; Hou C; Li Y; Qiu W; Huang L; Wang J; Lin N; Wan Y; Hu J; Liu XY Small; 2020 Jul; 16(26):e2000203. PubMed ID: 32452630 [TBL] [Abstract][Full Text] [Related]
15. Green Flexible Electronics: Natural Materials, Fabrication, and Applications. Hui Z; Zhang L; Ren G; Sun G; Yu HD; Huang W Adv Mater; 2023 Jul; 35(28):e2211202. PubMed ID: 36763956 [TBL] [Abstract][Full Text] [Related]
16. The effect of native silk fibroin powder on the physical properties and biocompatibility of biomedical polyurethane membrane. Zhuang Y; Zhang Q; Feng J; Wang N; Xu W; Yang H Proc Inst Mech Eng H; 2017 Apr; 231(4):337-346. PubMed ID: 28332447 [TBL] [Abstract][Full Text] [Related]
17. A Biodegradable and Stretchable Protein-Based Sensor as Artificial Electronic Skin for Human Motion Detection. Hou C; Xu Z; Qiu W; Wu R; Wang Y; Xu Q; Liu XY; Guo W Small; 2019 Mar; 15(11):e1805084. PubMed ID: 30690886 [TBL] [Abstract][Full Text] [Related]
18. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation. Cengiz IF; Pereira H; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM J Mater Sci Mater Med; 2019 May; 30(6):63. PubMed ID: 31127379 [TBL] [Abstract][Full Text] [Related]
19. Mechanically-reinforced 3D scaffold constructed by silk nonwoven fabric and silk fibroin sponge. Li D; Tao L; Wu T; Wang L; Sun B; Ke Q; Mo X; Deng B Colloids Surf B Biointerfaces; 2020 Dec; 196():111361. PubMed ID: 32992286 [TBL] [Abstract][Full Text] [Related]
20. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Kim DH; Viventi J; Amsden JJ; Xiao J; Vigeland L; Kim YS; Blanco JA; Panilaitis B; Frechette ES; Contreras D; Kaplan DL; Omenetto FG; Huang Y; Hwang KC; Zakin MR; Litt B; Rogers JA Nat Mater; 2010 Jun; 9(6):511-7. PubMed ID: 20400953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]