BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33382605)

  • 1. Photoenzymatic Reductions Enabled by Direct Excitation of Flavin-Dependent "Ene"-Reductases.
    Sandoval BA; Clayman PD; Oblinsky DG; Oh S; Nakano Y; Bird M; Scholes GD; Hyster TK
    J Am Chem Soc; 2021 Feb; 143(4):1735-1739. PubMed ID: 33382605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Ground-State to Excited-State Activation Modes: Flavin-Dependent "Ene"-Reductases Catalyzed Non-natural Radical Reactions.
    Fu H; Hyster TK
    Acc Chem Res; 2024 May; 57(9):1446-1457. PubMed ID: 38603772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective Hydrogen Atom Transfer: Discovery of Catalytic Promiscuity in Flavin-Dependent 'Ene'-Reductases.
    Sandoval BA; Meichan AJ; Hyster TK
    J Am Chem Soc; 2017 Aug; 139(33):11313-11316. PubMed ID: 28780870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoenzymatic Generation of Unstabilized Alkyl Radicals: An Asymmetric Reductive Cyclization.
    Clayman PD; Hyster TK
    J Am Chem Soc; 2020 Sep; 142(37):15673-15677. PubMed ID: 32857506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoenzymatic Catalysis Enables Radical-Mediated Ketone Reduction in Ene-Reductases.
    Sandoval BA; Kurtoic SI; Chung MM; Biegasiewicz KF; Hyster TK
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8714-8718. PubMed ID: 30951226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases*.
    Joseph Srinivasan S; Cleary SE; Ramirez MA; Reeve HA; Paul CE; Vincent KA
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):13824-13828. PubMed ID: 33721401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A complete bioconversion cascade for dehalogenation and denitration by bacterial flavin-dependent enzymes.
    Pimviriyakul P; Chaiyen P
    J Biol Chem; 2018 Nov; 293(48):18525-18539. PubMed ID: 30282807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Electron Oxidation-Initiated Enantioselective Hydrosulfonylation of Olefins Enabled by Photoenzymatic Catalysis.
    Shi Q; Kang XW; Liu Z; Sakthivel P; Aman H; Chang R; Yan X; Pang Y; Dai S; Ding B; Ye J
    J Am Chem Soc; 2024 Jan; 146(4):2748-2756. PubMed ID: 38214454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quaternary Charge-Transfer Complex Enables Photoenzymatic Intermolecular Hydroalkylation of Olefins.
    Page CG; Cooper SJ; DeHovitz JS; Oblinsky DG; Biegasiewicz KF; Antropow AH; Armbrust KW; Ellis JM; Hamann LG; Horn EJ; Oberg KM; Scholes GD; Hyster TK
    J Am Chem Soc; 2021 Jan; 143(1):97-102. PubMed ID: 33369395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free flavins accelerate release of ferrous iron from iron storage proteins by both free flavin-dependent and -independent ferric reductases in Escherichia coli.
    Satoh J; Kimata S; Nakamoto S; Ishii T; Tanaka E; Yumoto S; Takeda K; Yoshimura E; Kanesaki Y; Ishige T; Tanaka K; Abe A; Kawasaki S; Niimura Y
    J Gen Appl Microbiol; 2020 Jan; 65(6):308-315. PubMed ID: 31281172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic properties deduced from refined structures of NADH-cytochrome b5 reductase and the other flavin-dependent reductases: pyridine nucleotide-binding and interaction with an electron-transfer partner.
    Nishida H; Miki K
    Proteins; 1996 Sep; 26(1):32-41. PubMed ID: 8880927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoenzymatic Synthesis of α-Tertiary Amines by Engineered Flavin-Dependent "Ene"-Reductases.
    Gao X; Turek-Herman JR; Choi YJ; Cohen RD; Hyster TK
    J Am Chem Soc; 2021 Dec; 143(47):19643-19647. PubMed ID: 34784482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic properties of adenylylsulfate reductase from Desulfovibrio vulgaris Miyazaki.
    Yagi T; Ogata M
    Biochimie; 1996; 78(10):838-46. PubMed ID: 9116053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of flavin photochemistry to probe intraprotein and interprotein electron transfer mechanisms.
    Tollin G
    J Bioenerg Biomembr; 1995 Jun; 27(3):303-9. PubMed ID: 8847344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and Dynamics of Photodecarboxylation Catalyzed by Lactate Monooxygenase.
    Li X; Page CG; Zanetti-Polzi L; Kalra AP; Oblinsky DG; Daidone I; Hyster TK; Scholes GD
    J Am Chem Soc; 2023 Jun; 145(24):13232-13240. PubMed ID: 37289179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoenzymatic enantioselective intermolecular radical hydroalkylation.
    Huang X; Wang B; Wang Y; Jiang G; Feng J; Zhao H
    Nature; 2020 Aug; 584(7819):69-74. PubMed ID: 32512577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual non-enzymatic flavin catalysis enhances understanding of flavoenzymes.
    Argueta EA; Amoh AN; Kafle P; Schneider TL
    FEBS Lett; 2015 Apr; 589(8):880-4. PubMed ID: 25747137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of 4-ene-steroid 5 alpha-reductase proton transfer in androgen target tissues.
    Cooke GM; Robaire B
    J Steroid Biochem; 1984 Jun; 20(6A):1279-84. PubMed ID: 6748643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase.
    Kantz A; Chin F; Nallamothu N; Nguyen T; Gassner GT
    Arch Biochem Biophys; 2005 Oct; 442(1):102-16. PubMed ID: 16140257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved residue His-257 of
    Fang X; Osipiuk J; Chakravarthy S; Yuan M; Menzer WM; Nissen D; Liang P; Raba DA; Tuz K; Howard AJ; Joachimiak A; Minh DDL; Juarez O
    J Biol Chem; 2019 Sep; 294(37):13800-13810. PubMed ID: 31350338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.