BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33382873)

  • 1. Glioma-Derived TSP2 Promotes Excitatory Synapse Formation and Results in Hyperexcitability in the Peritumoral Cortex of Glioma.
    Wang YH; Huang TL; Chen X; Yu SX; Li W; Chen T; Li Y; Kuang YQ; Shu HF
    J Neuropathol Exp Neurol; 2021 Jan; 80(2):137-149. PubMed ID: 33382873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thrombospondin-2 promotes the proliferation and migration of glioma cells and contributes to the progression of glioma.
    Huang TL; Mei YW; Li Y; Chen X; Yu SX; Kuang YQ; Shu HF
    Chin Neurosurg J; 2022 Dec; 8(1):39. PubMed ID: 36476392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of thrombospondins and their neuronal receptor α2δ1 in the rat retina.
    Huang J; Zhou L; Wang H; Luo J; Zeng L; Xiong K; Chen D
    Exp Eye Res; 2013 Jun; 111():36-49. PubMed ID: 23541831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the mTOR signaling pathway in peritumoral tissues can cause glioma-associated seizures.
    Yuan Y; Xiang W; Yanhui L; Ruofei L; Jiewen L; Shu J; Qing M
    Neurol Sci; 2017 Jan; 38(1):61-66. PubMed ID: 27646413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thrombospondin-2 (TSP2) expression is inversely correlated with vascularity in glioma.
    Kazuno M; Tokunaga T; Oshika Y; Tanaka Y; Tsugane R; Kijima H; Yamazaki H; Ueyama Y; Nakamura M
    Eur J Cancer; 1999 Mar; 35(3):502-6. PubMed ID: 10448307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear.
    Mendus D; Sundaresan S; Grillet N; Wangsawihardja F; Leu R; Müller U; Jones SM; Mustapha M
    Eur J Neurosci; 2014 Apr; 39(8):1256-67. PubMed ID: 24460873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA Sequencing of Intraoperative Peritumoral Tissues Reveals Potential Pathways Involved in Glioma-Related Seizures.
    Kumar K; Dubey V; Zaidi SS; Tripathi M; Siraj F; Sharma MC; Chandra PS; Doddamani R; Dixit AB; Banerjee J
    J Mol Neurosci; 2023 Jun; 73(6):437-447. PubMed ID: 37268865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model.
    Hatcher A; Yu K; Meyer J; Aiba I; Deneen B; Noebels JL
    J Clin Invest; 2020 May; 130(5):2286-2300. PubMed ID: 32250339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased sensitivity to kindling in mice lacking TSP1.
    Mendus D; Rankin-Gee EK; Mustapha M; Porter BE
    Neuroscience; 2015 Oct; 305():302-8. PubMed ID: 26241338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TSP2 acts as a suppresser of cell invasion, migration and angiogenesis in medulloblastoma by inhibiting the Notch signaling pathway.
    Pan W; Song XY; Hu QB; Zhang M; Xu XH
    Brain Res; 2019 Sep; 1718():223-230. PubMed ID: 31063715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of death-associated protein kinase in human peritumoral tissue: A potential therapeutic target.
    Gao X; Wang H; Pollok KE; Chen J; Cohen-Gadol AA
    J Clin Neurosci; 2015 Oct; 22(10):1655-60. PubMed ID: 26165472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human glioma cells induce hyperexcitability in cortical networks.
    Campbell SL; Buckingham SC; Sontheimer H
    Epilepsia; 2012 Aug; 53(8):1360-70. PubMed ID: 22709330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glioma facilitates the epileptic and tumor-suppressive gene expressions in the surrounding region.
    Komiyama K; Iijima K; Kawabata-Iwakawa R; Fujihara K; Kakizaki T; Yanagawa Y; Yoshimoto Y; Miyata S
    Sci Rep; 2022 Apr; 12(1):6805. PubMed ID: 35474103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glioma-induced peritumoral hyperexcitability in a pediatric glioma model.
    Chaunsali L; Tewari BP; Gallucci A; Thompson EG; Savoia A; Feld N; Campbell SL
    Physiol Rep; 2020 Oct; 8(19):e14567. PubMed ID: 33026196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compromised GABAergic inhibition contributes to tumor-associated epilepsy.
    MacKenzie G; O'Toole KK; Moss SJ; Maguire J
    Epilepsy Res; 2016 Oct; 126():185-96. PubMed ID: 27513374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new neurophysiological/neuropathological ex vivo model localizes the origin of glioma-associated epileptogenesis in the invasion area.
    Senner V; Köhling R; Püttmann-Cyrus S; Straub H; Paulus W; Speckmann EJ
    Acta Neuropathol; 2004 Jan; 107(1):1-7. PubMed ID: 13680280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of NMDA 2B at S1303 in human glioma peritumoral tissue: implications for glioma epileptogenesis.
    Gao X; Wang H; Cai S; Saadatzadeh MR; Hanenberg H; Pollok KE; Cohen-Gadol AA; Chen J
    Neurosurg Focus; 2014 Dec; 37(6):E17. PubMed ID: 25434386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-density lipoprotein receptor-related protein contributes to the antiangiogenic activity of thrombospondin-2 in a murine glioma model.
    Fears CY; Grammer JR; Stewart JE; Annis DS; Mosher DF; Bornstein P; Gladson CL
    Cancer Res; 2005 Oct; 65(20):9338-46. PubMed ID: 16230396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thrombospondin 2-null mice display an altered brain foreign body response to polyvinyl alcohol sponge implants.
    Tian W; Kyriakides TR
    Biomed Mater; 2009 Feb; 4(1):015010. PubMed ID: 19020342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TSP1 and TSP2 Have Unique and Overlapping Roles in Protecting against Noise-Induced Auditory Synaptopathy.
    Smeriglio P; Wangsawihardja FV; Leu R; Mustapha M
    Neuroscience; 2019 Jun; 408():68-80. PubMed ID: 30928339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.