These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 33382946)
1. Preferential Vapor Nucleation on Hierarchical Tapered Nanowire Bunches. Du B; Cheng Y; Yang S; Xu W; Lan Z; Wen R; Ma X Langmuir; 2021 Jan; 37(2):774-784. PubMed ID: 33382946 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806 [TBL] [Abstract][Full Text] [Related]
3. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces. Zheng SF; Gross U; Wang XD Adv Colloid Interface Sci; 2021 Sep; 295():102503. PubMed ID: 34411880 [TBL] [Abstract][Full Text] [Related]
4. Vapor Condensation on Bioinspired Hierarchical Nanostructured Surfaces with Hybrid Wettabilities. Dai X; Wang M; Zhang J; Xin G; Wang X Langmuir; 2022 Sep; 38(36):11099-11108. PubMed ID: 36037002 [TBL] [Abstract][Full Text] [Related]
5. Microscopic Observation of Preferential Capillary Pumping in Hollow Nanowire Bundles. Chun J; Xu C; Li Q; Chen Y; Zhao Q; Yang W; Wen R; Ma X Langmuir; 2022 Jan; 38(1):352-362. PubMed ID: 34812042 [TBL] [Abstract][Full Text] [Related]
6. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation. Cha H; Wu A; Kim MK; Saigusa K; Liu A; Miljkovic N Nano Lett; 2017 Dec; 17(12):7544-7551. PubMed ID: 29178810 [TBL] [Abstract][Full Text] [Related]
7. Nanoarray-Embedded Hierarchical Surfaces for Highly Durable Dropwise Condensation. Hu Y; Jiang K; Liew KM; Zhang LW Research (Wash D C); 2022; 2022():9789657. PubMed ID: 36061819 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical Condensation. Yan X; Chen F; Sett S; Chavan S; Li H; Feng L; Li L; Zhao F; Zhao C; Huang Z; Miljkovic N ACS Nano; 2019 Jul; 13(7):8169-8184. PubMed ID: 31265236 [TBL] [Abstract][Full Text] [Related]
9. "Anti-Condensation" Aluminum Superhydrophobic Surface by Smaller Nanostructures. Li K; Zhao Y; Yang J; Feng J Front Bioeng Biotechnol; 2022; 10():887902. PubMed ID: 35557859 [TBL] [Abstract][Full Text] [Related]
10. Tailoring Nucleation at Two Interfaces Enables Single Crystalline NiO Nanowires via Vapor-Liquid-Solid Route. Nagashima K; Yoshida H; Klamchuen A; Kanai M; Meng G; Zhuge F; He Y; Anzai H; Zhu Z; Suzuki M; Boudot M; Takeda S; Yanagida T ACS Appl Mater Interfaces; 2016 Oct; 8(41):27892-27899. PubMed ID: 27670883 [TBL] [Abstract][Full Text] [Related]
11. Advances in micro and nanoengineered surfaces for enhancing boiling and condensation heat transfer: a review. Upot NV; Fazle Rabbi K; Khodakarami S; Ho JY; Kohler Mendizabal J; Miljkovic N Nanoscale Adv; 2023 Feb; 5(5):1232-1270. PubMed ID: 36866258 [TBL] [Abstract][Full Text] [Related]
12. Enrichment Effects Induced by Non-uniform Wettability Surfaces in the Presence of Non-condensable Gas: A Molecular Dynamics Simulation. Qiang W; Lan Z; Du B; Ren W; Xu W; Wen R; Ma X Langmuir; 2022 Aug; 38(33):10192-10201. PubMed ID: 35959936 [TBL] [Abstract][Full Text] [Related]
13. Impact of droplet composition on the nucleation rate and morphology of vapor-liquid-solid GeSn nanowires. Hijazi H; Zeghouane M; Bassani F; Gentile P; Salem B; Dubrovskii VG Nanotechnology; 2020 Oct; 31(40):405602. PubMed ID: 32503017 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic investigation of the barrier for heterogeneous nucleation on a fluid surface in comparison with a rigid surface. Eslami F; Elliott JA J Phys Chem B; 2011 Sep; 115(36):10646-53. PubMed ID: 21736344 [TBL] [Abstract][Full Text] [Related]
15. Atomic-Scale Observation of Vapor-Solid Nanowire Growth via Oscillatory Mass Transport. Zhang Z; Wang Y; Li H; Yuan W; Zhang X; Sun C; Zhang Z ACS Nano; 2016 Jan; 10(1):763-9. PubMed ID: 26645527 [TBL] [Abstract][Full Text] [Related]
16. Depletion of Lubricant from Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets. Adera S; Alvarenga J; Shneidman AV; Zhang CT; Davitt A; Aizenberg J ACS Nano; 2020 Jul; 14(7):8024-8035. PubMed ID: 32490664 [TBL] [Abstract][Full Text] [Related]
17. Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach. Xu W; Lan Z; Peng BL; Wen RF; Ma XH J Chem Phys; 2015 Feb; 142(5):054701. PubMed ID: 25662654 [TBL] [Abstract][Full Text] [Related]
18. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation. Gao S; Liu W; Liu Z Nanoscale; 2019 Jan; 11(2):459-466. PubMed ID: 30325374 [TBL] [Abstract][Full Text] [Related]
19. New mode of vapor-liquid-solid nanowire growth. Dubrovskii VG; Cirlin GE; Sibirev NV; Jabeen F; Harmand JC; Werner P Nano Lett; 2011 Mar; 11(3):1247-53. PubMed ID: 21344916 [TBL] [Abstract][Full Text] [Related]
20. Lattice Boltzmann modeling of droplet condensation on superhydrophobic nanoarrays. Zhang Q; Sun D; Zhang Y; Zhu M Langmuir; 2014 Oct; 30(42):12559-69. PubMed ID: 25275954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]