These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33382983)

  • 1. Multi-scale architecture of archaeal chromosomes.
    Takemata N; Bell SD
    Mol Cell; 2021 Feb; 81(3):473-487.e6. PubMed ID: 33382983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical and Functional Compartmentalization of Archaeal Chromosomes.
    Takemata N; Samson RY; Bell SD
    Cell; 2019 Sep; 179(1):165-179.e18. PubMed ID: 31539494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Euryarchaeal genomes are folded into SMC-dependent loops and domains, but lack transcription-mediated compartmentalization.
    Cockram C; Thierry A; Gorlas A; Lestini R; Koszul R
    Mol Cell; 2021 Feb; 81(3):459-472.e10. PubMed ID: 33382984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chromosome replication machinery of the archaeon Sulfolobus solfataricus.
    Duggin IG; Bell SD
    J Biol Chem; 2006 Jun; 281(22):15029-32. PubMed ID: 16467299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sub-cellular localization of Sulfolobus DNA replication.
    Gristwood T; Duggin IG; Wagner M; Albers SV; Bell SD
    Nucleic Acids Res; 2012 Jul; 40(12):5487-96. PubMed ID: 22402489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome segregation in Archaea: SegA- and SegB-DNA complex structures provide insights into segrosome assembly.
    Yen CY; Lin MG; Chen BW; Ng IW; Read N; Kabli AF; Wu CT; Shen YY; Chen CH; Barillà D; Sun YJ; Hsiao CD
    Nucleic Acids Res; 2021 Dec; 49(22):13150-13164. PubMed ID: 34850144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome conformation capture assay combined with biotin enrichment for hyperthermophilic archaea.
    Takemata N; Bell SD
    STAR Protoc; 2021 Jun; 2(2):100576. PubMed ID: 34142100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes.
    Robinson NP; Bell SD
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5806-11. PubMed ID: 17392430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus.
    Song N; Nguyen Duc T; van Oeffelen L; Muyldermans S; Peeters E; Charlier D
    Nucleic Acids Res; 2013 Mar; 41(5):2932-49. PubMed ID: 23355617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus.
    Contursi P; Pisani FM; Grigoriev A; Cannio R; Bartolucci S; Rossi M
    Extremophiles; 2004 Oct; 8(5):385-91. PubMed ID: 15480865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging views of genome organization in Archaea.
    Takemata N; Bell SD
    J Cell Sci; 2020 May; 133(10):. PubMed ID: 32423947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus.
    Duggin IG; Dubarry N; Bell SD
    EMBO J; 2011 Jan; 30(1):145-53. PubMed ID: 21113132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh.
    Sakofsky CJ; Grogan DW
    Genetics; 2015 Oct; 201(2):513-23. PubMed ID: 26224736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topologically associating domains are stable units of replication-timing regulation.
    Pope BD; Ryba T; Dileep V; Yue F; Wu W; Denas O; Vera DL; Wang Y; Hansen RS; Canfield TK; Thurman RE; Cheng Y; Gülsoy G; Dennis JH; Snyder MP; Stamatoyannopoulos JA; Taylor J; Hardison RC; Kahveci T; Ren B; Gilbert DM
    Nature; 2014 Nov; 515(7527):402-5. PubMed ID: 25409831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Form and function of archaeal genomes.
    Bell SD
    Biochem Soc Trans; 2022 Dec; 50(6):1931-1939. PubMed ID: 36511238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombination of synthetic oligonucleotides with prokaryotic chromosomes: substrate requirements of the Escherichia coli/lambdaRed and Sulfolobus acidocaldarius recombination systems.
    Grogan DW; Stengel KR
    Mol Microbiol; 2008 Sep; 69(5):1255-65. PubMed ID: 18631240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and interactions of the archaeal motility repression module ArnA-ArnB that modulates archaellum gene expression in
    Hoffmann L; Anders K; Bischof LF; Ye X; Reimann J; Khadouma S; Pham TK; van der Does C; Wright PC; Essen LO; Albers SV
    J Biol Chem; 2019 May; 294(18):7460-7471. PubMed ID: 30902813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages.
    Schumacher MA; Tonthat NK; Lee J; Rodriguez-Castañeda FA; Chinnam NB; Kalliomaa-Sanford AK; Ng IW; Barge MT; Shaw PL; Barillà D
    Science; 2015 Sep; 349(6252):1120-4. PubMed ID: 26339031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the interaction of the crenarchaeal chromatin protein Cren7 with DNA.
    Zhang Z; Gong Y; Guo L; Jiang T; Huang L
    Mol Microbiol; 2010 May; 76(3):749-59. PubMed ID: 20345658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between Alba and Cren7 Regulates Chromatin Compaction in
    Cajili MKM; Prieto EI
    Biomolecules; 2022 Mar; 12(4):. PubMed ID: 35454068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.