These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 33383217)
1. Glutamine metabolite α-ketoglutarate acts as an epigenetic co-factor to interfere with osteoclast differentiation. Lee S; Kim HS; Kim MJ; Min KY; Choi WS; You JS Bone; 2021 Apr; 145():115836. PubMed ID: 33383217 [TBL] [Abstract][Full Text] [Related]
2. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Hyeon S; Lee H; Yang Y; Jeong W Free Radic Biol Med; 2013 Dec; 65():789-799. PubMed ID: 23954472 [TBL] [Abstract][Full Text] [Related]
3. Cooperation of PU.1 With IRF8 and NFATc1 Defines Chromatin Landscapes During RANKL-Induced Osteoclastogenesis. Izawa N; Kurotaki D; Nomura S; Fujita T; Omata Y; Yasui T; Hirose J; Matsumoto T; Saito T; Kadono Y; Okada H; Miyamoto T; Tamura T; Aburatani H; Tanaka S J Bone Miner Res; 2019 Jun; 34(6):1143-1154. PubMed ID: 30721543 [TBL] [Abstract][Full Text] [Related]
4. RANKL induces Bach1 nuclear import and attenuates Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular reactive oxygen species signaling and osteoclastogenesis in mice. Kanzaki H; Shinohara F; Itohiya K; Yamaguchi Y; Katsumata Y; Matsuzawa M; Fukaya S; Miyamoto Y; Wada S; Nakamura Y FASEB J; 2017 Feb; 31(2):781-792. PubMed ID: 27836987 [TBL] [Abstract][Full Text] [Related]
5. CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo. Kim JY; Min JY; Baek JM; Ahn SJ; Jun HY; Yoon KH; Choi MK; Lee MS; Oh J Bone; 2015 Oct; 79():242-51. PubMed ID: 26103094 [TBL] [Abstract][Full Text] [Related]
6. Carnosic acid attenuates RANKL-induced oxidative stress and osteoclastogenesis via induction of Nrf2 and suppression of NF-κB and MAPK signalling. Thummuri D; Naidu VGM; Chaudhari P J Mol Med (Berl); 2017 Oct; 95(10):1065-1076. PubMed ID: 28674855 [TBL] [Abstract][Full Text] [Related]
7. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637 [TBL] [Abstract][Full Text] [Related]
9. KLF2 (kruppel-like factor 2 [lung]) regulates osteoclastogenesis by modulating autophagy. Laha D; Deb M; Das H Autophagy; 2019 Dec; 15(12):2063-2075. PubMed ID: 30894058 [TBL] [Abstract][Full Text] [Related]
10. DJ-1 controls bone homeostasis through the regulation of osteoclast differentiation. Kim HS; Nam ST; Mun SH; Lee SK; Kim HW; Park YH; Kim B; Won KJ; Kim HR; Park YM; Kim HS; Beaven MA; Kim YM; Choi WS Nat Commun; 2017 Nov; 8(1):1519. PubMed ID: 29142196 [TBL] [Abstract][Full Text] [Related]
11. GSH attenuates RANKL-induced osteoclast formation in vitro and LPS-induced bone loss in vivo. Han B; Geng H; Liu L; Wu Z; Wang Y Biomed Pharmacother; 2020 Aug; 128():110305. PubMed ID: 32485573 [TBL] [Abstract][Full Text] [Related]
12. Licorice isoliquiritigenin suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo. Zhu L; Wei H; Wu Y; Yang S; Xiao L; Zhang J; Peng B Int J Biochem Cell Biol; 2012 Jul; 44(7):1139-52. PubMed ID: 22521613 [TBL] [Abstract][Full Text] [Related]
13. Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. Ikeda F; Nishimura R; Matsubara T; Tanaka S; Inoue J; Reddy SV; Hata K; Yamashita K; Hiraga T; Watanabe T; Kukita T; Yoshioka K; Rao A; Yoneda T J Clin Invest; 2004 Aug; 114(4):475-84. PubMed ID: 15314684 [TBL] [Abstract][Full Text] [Related]
14. Xanthotoxin prevents bone loss in ovariectomized mice through the inhibition of RANKL-induced osteoclastogenesis. Dou C; Chen Y; Ding N; Li N; Jiang H; Zhao C; Kang F; Cao Z; Quan H; Luo F; Xu J; Dong S Osteoporos Int; 2016 Jul; 27(7):2335-2344. PubMed ID: 26809192 [TBL] [Abstract][Full Text] [Related]
15. RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. Yao Z; Lei W; Duan R; Li Y; Luo L; Boyce BF J Biol Chem; 2017 Jun; 292(24):10169-10179. PubMed ID: 28438834 [TBL] [Abstract][Full Text] [Related]
16. IGFBP7 acts as a negative regulator of RANKL-induced osteoclastogenesis and oestrogen deficiency-induced bone loss. Ye C; Hou W; Chen M; Lu J; Chen E; Tang L; Hang K; Ding Q; Li Y; Zhang W; He R Cell Prolif; 2020 Feb; 53(2):e12752. PubMed ID: 31889368 [TBL] [Abstract][Full Text] [Related]
17. PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts. Hikata T; Takaishi H; Takito J; Hakozaki A; Furukawa M; Uchikawa S; Kimura T; Okada Y; Matsumoto M; Yoshimura A; Nishimura R; Reddy SV; Asahara H; Toyama Y Blood; 2009 Mar; 113(10):2202-12. PubMed ID: 18952894 [TBL] [Abstract][Full Text] [Related]
18. HDAC2 regulates FoxO1 during RANKL-induced osteoclastogenesis. Dou C; Li N; Ding N; Liu C; Yang X; Kang F; Cao Z; Quan H; Hou T; Xu J; Dong S Am J Physiol Cell Physiol; 2016 May; 310(10):C780-7. PubMed ID: 26962001 [TBL] [Abstract][Full Text] [Related]
19. Regulation of osteoclast differentiation by the redox-dependent modulation of nuclear import of transcription factors. Huh YJ; Kim JM; Kim H; Song H; So H; Lee SY; Kwon SB; Kim HJ; Kim HH; Lee SH; Choi Y; Chung SC; Jeong DW; Min BM Cell Death Differ; 2006 Jul; 13(7):1138-46. PubMed ID: 16224490 [TBL] [Abstract][Full Text] [Related]
20. Knockdown of TRPV4 suppresses osteoclast differentiation and osteoporosis by inhibiting autophagy through Ca Cao B; Dai X; Wang W J Cell Physiol; 2019 May; 234(5):6831-6841. PubMed ID: 30387123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]